HNCDrugResDb: a platform for deciphering drug resistance in head and neck cancers

Kumar, R. et al. Alcohol and Tobacco increases risk of high risk HPV infection in Head and Neck Cancer patients: study from North-East Region of India. PLoS One 10, e0140700. https://doi.org/10.1371/journal.pone.0140700 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Posner, M. R. et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl. J. Med. 357, 1705–1715. https://doi.org/10.1056/NEJMoa070956 (2007).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sindhu, S. K. & Bauman, J. E. Current concepts in Chemotherapy for Head and Neck Cancer. Oral Maxillofac. Surg. Clin. North. Am. 31, 145–154. https://doi.org/10.1016/j.coms.2018.09.003 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Falco, A. et al. First-line cisplatin, docetaxel, and cetuximab for patients with recurrent or metastatic head and neck cancer: a multicenter cohort study. World J. Clin. Oncol. 13, 147–158. https://doi.org/10.5306/wjco.v13.i2.147 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Gormley, M., Creaney, G., Schache, A., Ingarfield, K. & Conway, D. I. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br. Dent. J. 233, 780–786. https://doi.org/10.1038/s41415-022-5166-x (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Denaro, N., Merlano, M. C. & Russi, E. G. Follow-up in Head and Neck Cancer: do more does it Mean do better? A systematic review and our proposal based on our experience. Clin. Exp. Otorhinolaryngol. 9, 287–297. https://doi.org/10.21053/ceo.2015.00976 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Radhakrishnan, A. et al. A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma. Sci. Rep. 6, 36132. https://doi.org/10.1038/srep36132 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. The different mechanisms of Cancer Drug Resistance: a brief review. Adv. Pharm. Bull. 7, 339–348. https://doi.org/10.15171/apb.2017.041 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bukowski, K., Kciuk, M. & Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21093233 (2020).Pan, S. T., Li, Z. L., He, Z. X., Qiu, J. X. & Zhou, S. F. Molecular mechanisms for tumour resistance to chemotherapy. Clin. Exp. Pharmacol. Physiol. 43, 723–737. https://doi.org/10.1111/1440-1681.12581 (2016).Article 
CAS 
PubMed 

Google Scholar 
Picon, H. & Guddati, A. K. Mechanisms of resistance in head and neck cancer. Am. J. Cancer Res. 10, 2742–2751 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanno, Y., Chen, C. Y., Lee, H. L., Chiou, J. F. & Chen, Y. J. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck cancers. Front. Oncol. 11, 640392. https://doi.org/10.3389/fonc.2021.640392 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martinez-Balibrea, E., Ciribilli, Y. & Editorial Transcriptional Regulation as a key player in Cancer cells Drug Resistance. Front. Oncol. 11, 764506. https://doi.org/10.3389/fonc.2021.764506 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Sun, Q. et al. HIF–1alpha or HOTTIP/CTCF promotes Head and Neck squamous cell Carcinoma Progression and Drug Resistance by Targeting HOXA9. Mol. Ther. Nucleic Acids. 28, 32–34. https://doi.org/10.1016/j.omtn.2022.01.001 (2022). Erratum.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mitchell, C. J. et al. A multi-omic analysis of human naive CD4 + T cells. BMC Syst. Biol. https://doi.org/10.1186/s12918-015-0225-4 (2015).Jang, S. K. et al. CDRgator: an integrative Navigator of Cancer Drug Resistance Gene signatures. Mol. Cells 42, 237–244. https://doi.org/10.14348/molcells.2018.0413 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumar, R. et al. CancerDR: cancer drug resistance database. Sci. Rep. 3, 1445. https://doi.org/10.1038/srep01445 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, X. et al. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res. 51, D1263–D1275. https://doi.org/10.1093/nar/gkac812 (2023).Article 
CAS 
PubMed 

Google Scholar 
Liu, Z. et al. CTR-DB, an omnibus for patient-derived gene expression signatures correlated with cancer drug response. Nucleic Acids Res. 50, D1184–D1199. https://doi.org/10.1093/nar/gkab860 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ponnusamy, L., Mahalingaiah, P. K. S., Chang, Y. W. & Singh, K. P. Role of cellular reprogramming and epigenetic dysregulation in acquired chemoresistance in breast cancer. Cancer Drug Resist. 2, 297–312. https://doi.org/10.20517/cdr.2018.11 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Dai, F. et al. Non-coding RNAs in drug resistance of head and neck cancers: a review. Biomed. Pharmacother. 127, 110231. https://doi.org/10.1016/j.biopha.2020.110231 (2020).Article 
CAS 
PubMed 

Google Scholar 
Richard, V. et al. Analysis of MicroRNA-mRNA interactions in stem cell-enriched fraction of oral squamous cell carcinoma. Oncol. Res. 26, 17–26. https://doi.org/10.3727/096504017X14881490607028 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ramesh, P. et al. Helicobacter pylori regulated microRNA map of human gastric cells. Helicobacter 28, e12941. https://doi.org/10.1111/hel.12941 (2023).Article 
CAS 
PubMed 

Google Scholar 
Thatai, A. K. S. et al. VirhostlncR: a comprehensive database to explore lncRNAs and their targets in viral infections. Comput. Biol. Med. 164, 107279. https://doi.org/10.1016/j.compbiomed.2023.107279 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ramakrishnan, K., Vishwakarma, R., Dev, R. R., Raju, R. & Rehman, N. Etiologically Significant microRNAs in Hepatitis B Virus-Induced Hepatocellular Carcinoma. OMICS 28, 280–290, doi: https://doi.org/10.1089/omi.2024.0071 (2024).Nakatani, K. et al. Establishment and gene analysis of a cisplatin-resistant cell line, Sa–3R, derived from oral squamous cell carcinoma. Oncol. Rep. 13, 709–714 (2005).CAS 
PubMed 

Google Scholar 
Zheng, J. et al. The role of long non-coding RNA HOTAIR in the progression and development of laryngeal squamous cell carcinoma interacting with EZH2. Acta Otolaryngol. 137, 90–98. https://doi.org/10.1080/00016489.2016.1214982 (2017).Article 
CAS 
PubMed 

Google Scholar 
Maji, S. et al. STAT3- and GSK3beta-mediated Mcl–1 regulation modulates TPF resistance in oral squamous cell carcinoma. Carcinogenesis 40, 173–183. https://doi.org/10.1093/carcin/bgy135 (2019).Article 
CAS 
PubMed 

Google Scholar 
Huang, S. et al. LINC00958-MYC positive feedback loop modulates resistance of head and neck squamous cell carcinoma cells to chemo- and radiotherapy in vitro. Onco Targets Ther. 12, 5989–6000. https://doi.org/10.2147/OTT.S208318 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Robinson, A. M. et al. Cisplatin exposure causes c-Myc-dependent resistance to CDK4/6 inhibition in HPV-negative head and neck squamous cell carcinoma. Cell. Death Dis. 10, 867. https://doi.org/10.1038/s41419-019-2098-8 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, H. et al. Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers. Breast Cancer Res. 13, R9. https://doi.org/10.1186/bcr2814 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Asaduzzaman, M. et al. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res. Treat. 163, 461–474. https://doi.org/10.1007/s10549-017-4202-z (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, S. et al. c-Jun and Camk2a contribute to the drug resistance of induction docetaxel/cisplatin/5-fluorouracil in hypopharyngeal carcinoma. Int. J. Clin. Exp. Pathol. 11, 4605–4613 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
Nakagawa, Y. et al. Overexpression of fibronectin confers cell adhesion-mediated drug resistance (CAM-DR) against 5-FU in oral squamous cell carcinoma cells. Int. J. Oncol. 44, 1376–1384. https://doi.org/10.3892/ijo.2014.2265 (2014).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y. J. et al. Enhancing chemosensitivity in oral squamous cell carcinoma by lentivirus vector-mediated RNA interference targeting EGFR and MRP2. Oncol. Lett. 12, 2107–2114. https://doi.org/10.3892/ol.2016.4883 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, C. C. et al. Up-regulation of HB-EGF by the COX–2/PGE2 signaling associates with the cisplatin resistance and tumor recurrence of advanced HNSCC. Oral Oncol. 56, 54–61. https://doi.org/10.1016/j.oraloncology.2016.03.010 (2016).Article 
CAS 
PubMed 

Google Scholar 
Hsieh, M. J. et al. Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma. Int. J. Oncol. 55, 949–959. https://doi.org/10.3892/ijo.2019.4866 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ye, G., Zhang, J. & Zhang, C. Stimulator of interferon response cGAMP interactor overcomes ERBB2-mediated apatinib resistance in head and neck squamous cell carcinoma. Aging (Albany NY) 13, 20793–20807. https://doi.org/10.18632/aging.203475 (2021).Article 
CAS 
PubMed 

Google Scholar 
Leonard, B. et al. BET inhibition overcomes receptor tyrosine kinase-mediated Cetuximab Resistance in HNSCC. Cancer Res. 78, 4331–4343. https://doi.org/10.1158/0008-5472 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Hsu, D. S. et al. Lymphotoxin-beta interacts with methylated EGFR to Mediate Acquired Resistance to Cetuximab in Head and Neck Cancer. Clin. Cancer Res. 23, 4388–4401. https://doi.org/10.1158/1078-0432 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhuang, Z. et al. MicroRNA–218 promotes cisplatin resistance in oral cancer via the PPP2R5A/Wnt signaling pathway. Oncol. Rep. 38, 2051–2061. https://doi.org/10.3892/or.2017.5899 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ghosh, R. D. et al. MicroRNA profiling of cisplatin-resistant oral squamous cell carcinoma cell lines enriched with cancer-stem-cell-like and epithelial-mesenchymal transition-type features. Sci. Rep. 6, 23932. https://doi.org/10.1038/srep23932 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mohapatra, P. et al. CMTM6 drives cisplatin resistance by regulating wnt signaling through the ENO–1/AKT/GSK3beta axis. JCI Insight 6 https://doi.org/10.1172/jci.insight.143643 (2021).Gu, Y. et al. Cloning and functional characterization of TCRP1, a novel gene mediating resistance to cisplatin in an oral squamous cell carcinoma cell line. FEBS Lett. 585, 881–887. https://doi.org/10.1016/j.febslet.2010.12.045 (2011).Article 
CAS 
PubMed 

Google Scholar 
Huang, Z. et al. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-kappaB pathway activation through RPS3. Cell. Death Dis. 10, 936. https://doi.org/10.1038/s41419-019-2177-x (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nagata, M. et al. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br. J. Cancer. 105, 1322–1330. https://doi.org/10.1038/bjc.2011.387 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, L., Mosel, A. J., Oakley, G. G. & Peng, A. Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer. Mol. Cancer Ther. 11, 2401–2409. https://doi.org/10.1158/1535-7163.MCT-12-0448 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Naik, P. P. et al. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma. Cell. Prolif. 51. https://doi.org/10.1111/cpr.12411 (2018).Basak, S. K. et al. Liposome encapsulated curcumin-difluorinated (CDF) inhibits the growth of cisplatin resistant head and neck cancer stem cells. Oncotarget 6, 18504–18517. https://doi.org/10.18632/oncotarget.4181 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Baro, M., Lopez Sambrooks, C., Burtness, B. A., Lemmon, M. A. & Contessa, J. N. Neuregulin Signaling is a mechanism of Therapeutic Resistance in Head and Neck squamous cell carcinoma. Mol. Cancer Ther. 18, 2124–2134. https://doi.org/10.1158/1535-7163.MCT-19-0163 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saki, M., Toulany, M. & Rodemann, H. P. Acquired resistance to cetuximab is associated with the overexpression of Ras family members and the loss of radiosensitization in head and neck cancer cells. Radiother Oncol. 108, 473–478. https://doi.org/10.1016/j.radonc.2013.06.023 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hatakeyama, H. et al. Regulation of heparin-binding EGF-like growth factor by miR–212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS One 5, e12702. https://doi.org/10.1371/journal.pone.0012702 (2010).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gomes, I. N. F. et al. Comprehensive Molecular Landscape of Cetuximab Resistance in Head and Neck Cancer Cell Lines. Cells 11. doi: https://doi.org/10.3390/cells11010154 (2022).Liu, S. et al. Over-expression of BAG–1 in head and neck squamous cell carcinomas (HNSCC) is associated with cisplatin-resistance. J. Transl Med. 15, 189. https://doi.org/10.1186/s12967-017-1289-2 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L. et al. Enhancer remodeling activates NOTCH3 signaling to confer chemoresistance in advanced nasopharyngeal carcinoma. Cell. Death Dis. 14, 513. https://doi.org/10.1038/s41419-023-06028-z (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hazar-Rethinam, M. et al. RacGAP1 is a novel downstream Effector of E2F7-Dependent resistance to Doxorubicin and is prognostic for overall survival in squamous cell carcinoma. Mol. Cancer Ther. 14, 1939–1950. https://doi.org/10.1158/1535-7163 (2015).Article 
PubMed 

Google Scholar 
Wang, X., Zhang, H. & Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2, 141–160. https://doi.org/10.20517/cdr.2019.10 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lambert, M., Jambon, S., Depauw, S. & David-Cordonnier, M. H. Targeting transcription factors for Cancer Treatment. Molecules 23 https://doi.org/10.3390/molecules23061479 (2018).Maesawa, C. et al. MAD-related genes on 18q21.1, Smad2 and Smad4, are altered infrequently in esophageal squamous cell carcinoma. Jpn. J. Cancer Res. 88, 340–343. https://doi.org/10.1111/j.1349-7006.1997.tb00386.x (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Link, W. & Fernandez-Marcos, P. J. FOXO transcription factors at the interface of metabolism and cancer. Int. J. Cancer 141, 2379–2391. https://doi.org/10.1002/ijc.30840 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956. https://doi.org/10.1038/onc.2016.502 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sizemore, G. M., Pitarresi, J. R., Balakrishnan, S. & Ostrowski, M. C. The ETS family of oncogenic transcription factors in solid tumours. Nat. Rev. Cancer 17, 337–351. https://doi.org/10.1038/nrc.2017.20 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in Cancer. Cell 168, 629–643. https://doi.org/10.1016/j.cell.2016.12.013 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gollner, S. et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat. Med. 23, 69–78. https://doi.org/10.1038/nm.4247 (2017).Article 
CAS 
PubMed 

Google Scholar 
Pawar, H. et al. Downregulation of cornulin in esophageal squamous cell carcinoma. Acta Histochem. 115, 89–99. https://doi.org/10.1016/j.acthis.2012.04.003 (2013).Article 
CAS 
PubMed 

Google Scholar 
Vishnoi, K., Viswakarma, N., Rana, A. & Rana, B. Transcription factors in Cancer Development and Therapy. Cancers (Basel) 12 https://doi.org/10.3390/cancers12082296 (2020).Kohno, K. et al. Transcription factors and drug resistance. Eur. J. Cancer 41, 2577–2586. https://doi.org/10.1016/j.ejca.2005.08.007 (2005).Article 
CAS 
PubMed 

Google Scholar 
Tian, L. et al. Overexpression of miR–26b decreases the cisplatin-resistance in laryngeal cancer by targeting ATF2. Oncotarget. 8, 79023–79033. https://doi.org/10.18632/oncotarget.20784 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Choi, H. S., Kim, Y. K., Hwang, K. G. & Yun, P. Y. Increased FOXM1 expression by Cisplatin inhibits paclitaxel-related apoptosis in cisplatin-resistant human oral squamous cell carcinoma (OSCC) cell lines. Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21238897 (2020).Yuan, Z. et al. Long non-coding RNA AFAP1-AS1/miR–320a/RBPJ axis regulates laryngeal carcinoma cell stemness and chemoresistance. J. Cell. Mol. Med. 22, 4253–4262. https://doi.org/10.1111/jcmm.13707 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, A. & Koehler, A. N. Transcription factor inhibition: lessons learned and emerging targets. Trends Mol. Med. 26, 508–518. https://doi.org/10.1016/j.molmed.2020.01.004 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mitra, P. Targeting transcription factors in cancer drug discovery. Explor. Target. Antitumor Ther. 1, 401–412. https://doi.org/10.37349/etat.2020.00025 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ma, J., Lyu, H., Huang, J. & Liu, B. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Mol. Cancer 13, 105. https://doi.org/10.1186/1476-4598-13-105 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ayoub, N. M. & Editorial Novel combination therapies for the treatment of solid cancers. Front. Oncol. 11, 708943. https://doi.org/10.3389/fonc.2021.708943 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Duvvuri, U. et al. Molecular and clinical activity of CDX–3379, an Anti-ErbB3 monoclonal antibody, in Head and Neck squamous cell carcinoma patients. Clin. Cancer Res. 25, 5752–5758. https://doi.org/10.1158/1078-0432 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, J., Saba, N. F., Chen, G. Z. & Shin, D. M. Targeting HER (ERBB) signaling in head and neck cancer: an essential update. Mol. Aspects Med. 45, 74–86. https://doi.org/10.1016/j.mam.2015.07.001 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, X. et al. Development of effective therapeutics targeting HER3 for Cancer Treatment. Biol. Proced. Online 21. https://doi.org/10.1186/s12575-019-0093-1 (2019).Gan, H. K. et al. A phase I, first-in-human study of GSK2849330, an Anti-HER3 monoclonal antibody, in HER3-Expressing solid tumors. Oncologist 26, e1844–e1853. https://doi.org/10.1002/onco.13860 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, B. et al. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal. Transduct. Target. Ther. 7, 121. https://doi.org/10.1038/s41392-022-00975-3 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ye, P., Feng, L., Shi, S. & Dong, C. The mechanisms of lncRNA-Mediated Multidrug Resistance and the clinical application prospects of lncRNAs in breast Cancer. Cancers (Basel). 14. https://doi.org/10.3390/cancers14092101 (2022).Magee, P., Shi, L. & Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl Med. 3, 332. https://doi.org/10.3978/j.issn.2305-5839.2015.11.32 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jing, Y. et al. Autophagy-mediating microRNAs in cancer chemoresistance. Cell. Biol. Toxicol. 36, 517–536. https://doi.org/10.1007/s10565-020-09553-1 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ratti, M. et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as New Tools for Cancer Therapy: first steps from Bench to Bedside. Target. Oncol. 15, 261–278. https://doi.org/10.1007/s11523-020-00717-x (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162. https://doi.org/10.1093/nar/gky1141 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43 (D512-520). https://doi.org/10.1093/nar/gku1267 (2015).Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 169. https://doi.org/10.1186/s12859-015-0611-3 (2015).Article 

Google Scholar 
Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224. https://doi.org/10.1093/nar/gkz446 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–97. https://doi.org/10.1093/nar/gkw377 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74. https://doi.org/10.1038/nature11247 (2012).Article 
ADS 
CAS 

Google Scholar 
Kandasamy, K. et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 11 (R3). https://doi.org/10.1186/gb-2010-11-1-r3 (2010).Raju, R. et al. NetSlim: high-confidence curated signaling maps. Database (Oxford) bar032. doi: https://doi.org/10.1093/database/bar032 (2011).Kutmon, M. et al. PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput. Biol. 11, e1004085. https://doi.org/10.1371/journal.pcbi.1004085 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles