Finite element study of stress distribution in medial UKA under varied lower limb alignment

Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).Article 
CAS 
PubMed 

Google Scholar 
Jw, L. et al. A scoping review of how early-stage knee osteoarthritis has been defined. Osteoarthr. Cartil. 31 (2023).Bruce, D. J. et al. Minimum 10-year outcomes of a fixed bearing all-polyethylene unicompartmental knee arthroplasty used to treat medial osteoarthritis. Knee 27, 1018–1027 (2020).Article 
PubMed 

Google Scholar 
Murray, D. W. & Parkinson, R. W. Usage of unicompartmental knee arthroplasty. Bone Jt. J. 100-B, 432–435 (2018).Article 
CAS 

Google Scholar 
Xue, H. et al. Predictors of satisfactory outcomes with fixed-bearing lateral unicompartmental knee arthroplasty: up to 7-year Follow-Up. J. Arthroplasty 36, 910–916 (2021).Article 
PubMed 

Google Scholar 
Kwon, O. R. et al. Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J. Orthop. Res. 32, 338–345 (2014).Article 
PubMed 

Google Scholar 
Rodríguez-Merchán, E. C. & Gómez-Cardero, P. Unicompartmental knee arthroplasty: current indications, technical issues and results. EFORT Open Rev. 3, 363–373 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ma, P. et al. Biomechanical effects of fixed-bearing femoral prostheses with different coronal positions in medial unicompartmental knee arthroplasty. J. Orthop. Surg. Res. 17, 150 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Douiri, A. et al. Functional scores and prosthetic implant placement are different for navigated medial UKA left in varus alignment. Knee Surg. Sports Traumatol. Arthrosc. 31, 3919–3926 (2023).Article 
PubMed 

Google Scholar 
Wen, P. F. et al. Effects of Lower Limb Alignment and Tibial Component inclination on the biomechanics of lateral compartment in Unicompartmental knee arthroplasty. Chin. Med. J. (Engl.) 130, 2563–2568 (2017).Article 
ADS 
PubMed 

Google Scholar 
Nie, Y., Yu, Q. & Shen, B. Impact of tibial component coronal alignment on knee Joint Biomechanics following fixed-bearing unicompartmental knee arthroplasty: a finite element analysis. Orthop. Surg. 13, 1423–1429 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Kennedy, W. R. & White, R. P. Unicompartmental arthroplasty of the knee. Postoperative alignment and its influence on overall results. Clin. Orthop. Relat. Res. 278–285 (1987).Kim, K. T., Lee, S., Kim, T. W., Lee, J. S. & Boo, K. H. The influence of postoperative Tibiofemoral Alignment on the clinical results of Unicompartmental knee arthroplasty. Knee Surg. Relat. Res. 24, 85 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
McCann, L., Ingham, E., Jin, Z. & Fisher, J. Influence of the meniscus on friction and degradation of cartilage in the natural knee joint. Osteoarthr. Cartil. 17, 995–1000 (2009).Article 
CAS 

Google Scholar 
Crockett, R. et al. Friction, lubrication, and polymer transfer between UHMWPE and CoCrMo hip-implant materials: a fluorescence microscopy study. J. Biomedical Mater. Res. 89A, 1011–1018 (2009).Article 
CAS 

Google Scholar 
Peña, E., Calvo, B., Martínez, M. A. & Doblaré, M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39, 1686–1701 (2006).Article 
PubMed 

Google Scholar 
Zainal Abidin, N. A. et al. Biomechanical effects of cross-pin’s diameter in reconstruction of anterior cruciate ligament – A specific case study via finite element analysis. Injury 53, 2424–2436 (2022).Article 
PubMed 

Google Scholar 
Shriram, D., Praveen Kumar, G., Cui, F., Lee, Y. H. D. & Subburaj, K. Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci. Rep. 7, 6011 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Marques Luís, N. & Varatojo, R. Radiological assessment of lower limb alignment. EFORT Open Rev. 6, 487–494 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Tuncer, M., Cobb, J. P., Hansen, U. N. & Amis, A. A. Validation of multiple subject-specific finite element models of unicompartmental knee replacement. Med. Eng. Phys. 35, 1457–1464 (2013).Article 
PubMed 

Google Scholar 
Kutzner, I. et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43, 2164–2173 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. G., Kang, K. T. & Wang, J. H. Biomechanical difference between Conventional Transtibial single-bundle and anatomical Transportal double-bundle Anterior Cruciate Ligament Reconstruction using three-dimensional finite element Model Analysis. J. Clin. Med. 10, 1625 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Stoddart, J. C., Garner, A., Tuncer, M., Cobb, J. P. & van Arkel, R. J. The risk of tibial eminence avulsion fracture with bi-unicondylar knee arthroplasty : a finite element analysis. Bone Joint Res. 11, 575–584 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Pegg, E. C. et al. Minimising tibial fracture after unicompartmental knee replacement: a probabilistic finite element study. Clin. Biomech. (Bristol Avon) 73, 46–54 (2020).Article 
PubMed 

Google Scholar 
Bendjaballah, M., Shirazi-Adl, A. & Zukor, D. Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2, 69–79 (1995).Article 

Google Scholar 
Fukubayashi, T. & Kurosawa, H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop. Scand. 51, 871–879 (1980).Article 
CAS 
PubMed 

Google Scholar 
Bao, H. R. C., Zhu, D., Gong, H. & Gu, G. S. The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis. J. Orthop. Sci. 18, 256–263 (2013).Article 
CAS 
PubMed 

Google Scholar 
Fox, R. J., Harner, C. D., Sakane, M., Carlin, G. J. & Woo, S. L. Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. A cadaveric study. Am. J. Sports Med. 26, 395–401 (1998).Article 
CAS 
PubMed 

Google Scholar 
Gabriel, M. T., Wong, E. K., Woo, S. L. Y., Yagi, M. & Debski, R. E. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J. Orthop. Res. 22, 85–89 (2004).Article 
PubMed 

Google Scholar 
Crawford, D. A., Berend, K. R. & Thienpont, E. Unicompartmental knee arthroplasty: US and global perspectives. Orthop. Clin. N. Am. 51, 147–159 (2020).Article 

Google Scholar 
Tay, M. L., Young, S. W., Frampton, C. M. & Hooper, G. J. The lifetime revision risk of unicompartmental knee arthroplasty. Bone Jt. J. 104-B, 672–679 (2022).Article 
PubMed 

Google Scholar 
Zhu, G. D., Guo, W. S., Zhang, Q. D., Liu, Z. H. & Cheng, L. M. Finite element analysis of Mobile-bearing Unicompartmental knee arthroplasty: the influence of tibial component coronal alignment. Chin. Med. J. (Engl.) 128, 2873–2878 (2015).Article 
PubMed 

Google Scholar 
Ferretti, A. et al. Biomechanics of anterior cruciate ligament reconstruction using twisted doubled hamstring tendons. Int. Orthop. 27, 22–25 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kutzner, I., Trepczynski, A., Heller, M. O. & Bergmann, G. Knee adduction moment and medial contact force–facts about their correlation during gait. PLoS One 8, e81036 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Thoreau, L., Morcillo Marfil, D. & Thienpont, E. Periprosthetic fractures after medial unicompartmental knee arthroplasty: a narrative review. Arch. Orthop. Trauma. Surg. 142, 2039–2048 (2022).Article 
CAS 
PubMed 

Google Scholar 
Schileo, E., Taddei, F., Cristofolini, L. & Viceconti, M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41, 356–367 (2008).Article 
PubMed 

Google Scholar 
L, C. et al. Articular cartilage degradation and aberrant subchondral bone remodeling in patients with osteoarthritis and osteoporosis. J. Bone. Miner. Res. 35, (2020).Thorp, L. E. et al. Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis. Bone 39, 1116–1122 (2006).Article 
CAS 
PubMed 

Google Scholar 
Slaven, S. E. et al. The impact of coronal alignment on revision in Medial fixed-bearing unicompartmental knee arthroplasty. J. Arthroplasty 35, 353–357 (2020).Article 
PubMed 

Google Scholar 
Iesaka, K. et al. The effects of tibial component inclination on bone stress after unicompartmental knee arthroplasty. J. Biomech. 35, 969–974 (2002).Article 
CAS 
PubMed 

Google Scholar 
Fisher, D. A., Watts, M. & Davis, K. E. Implant position in knee surgery: a comparison of minimally invasive, open unicompartmental, and total knee arthroplasty. J. Arthroplasty 18, 2–8 (2003).Article 
PubMed 

Google Scholar 
Hernigou, P. & Deschamps, G. Alignment influences wear in the knee after medial unicompartmental arthroplasty. Clin. Orthop. Relat. Res. 161–165. https://doi.org/10.1097/01.blo.0000128285.90459.12 (2004).Adulkasem, N., Rojanasthien, S., Siripocaratana, N. & Limmahakhun, S. Posterior tibial slope modification in osteoarthritis knees with different ACL conditions: cadaveric study of fixed-bearing UKA. J. Orthop. Surg. (Hong Kong) 27, 2309499019836286 (2019).Article 
PubMed 

Google Scholar 
Bellemans, J., Colyn, W., Vandenneucker, H. & Victor, J. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin. Orthop. Relat. Res. 470, 45–53 (2012).Article 
PubMed 

Google Scholar 
Vasso, M. et al. Minor varus alignment provides better results than neutral alignment in medial UKA. Knee 22, 117–121 (2015).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles