Anti-IL-1RAP scFv-mSA-S19-TAT fusion carrier as a multifunctional platform for versatile delivery of biotinylated payloads to myeloid leukemia cells

1 Deschler, B. & Lübbert, M. Acute myeloid leukemia: epidemiology and etiology. Cancer Interdiscip. Int. J. Am. Cancer Soc. 107, 2099–2107. https://doi.org/10.1002/cncr.22233 (2006).Article 

Google Scholar 
Maksimovic, N. et al. Incidence and mortality patterns of Acute myeloid leukemia in Belgrade, Serbia (1999–2013). Med. 54, 5. https://doi.org/10.3390/medicina54010005 (2018).Article 

Google Scholar 
Shallis, R. M., Wang, R., Davidoff, A., Ma, X. & Zeidan, A. M. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 36, 70–87. https://doi.org/10.1016/j.blre.2019.04.005 (2019).Article 
PubMed 

Google Scholar 
Southam, C. M., Craver, L. F., Dargeon, H. W. & Burchenal, J. H. A study of the natural history of acute leukemia with special reference to the duration of the disease and the occurrence of remissions. Cancer. 4, 39–59. https://doi.org/10.1002/1097-0142(195101)4 (1951). :1%3C39::AID-CNCR2820040105%3E3.0.CO;2-G.Article 
CAS 
PubMed 

Google Scholar 
Cheung, E. et al. The leukemia strikes back: a review of pathogenesis and treatment of secondary AML. Ann. Hematol. 98, 541–559. https://doi.org/10.1200/JCO.2014.60.0890 (2019).Article 
PubMed 

Google Scholar 
Knapper, S. et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 108, 3262–3270. https://doi.org/10.1182/blood-2006-04-015560 (2006).Article 
CAS 
PubMed 

Google Scholar 
Barreto, I. V. et al. Leukemic stem cell: a mini-review on clinical perspectives. Front. Oncol. 12, 931050. https://doi.org/10.3389/fonc.2022.931050 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Afessa, B. & Peters, S. G. in Semin. Respir. Crit. Care Med.. 297–309 (Thieme Medical Publishers, Inc).Tettamanti, S., Pievani, A., Biondi, A., Dotti, G. & Serafini, M. Catch me if you can: how AML and its niche escape immunotherapy. Leuk. 36, 13–22. https://doi.org/10.1038/s41375-021-01350-x (2022).Article 

Google Scholar 
Arpinati, M. & Curti, A. Immunotherapy in acute myeloid leukemia. Immunother. 6, 95–106. https://doi.org/10.2217/imt.13.152 (2014).Article 
CAS 

Google Scholar 
Reilly, A. et al. Immunologic consequences of chemotherapy for acute myeloid leukemia. J. Pediatr. Hematol. Oncol. 35, 46. https://doi.org/10.1097/MPH.0b013e318266c0c8 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bochennek, K. et al. Infectious complications in children with acute myeloid leukemia: decreased mortality in multicenter trial AML-BFM 2004. Blood Cancer J. 6, e382–e382. https://doi.org/10.1038/bcj.2015.110 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Khaldoyanidi, S., Nagorsen, D., Stein, A., Ossenkoppele, G. & Subklewe, M. Immune biology of acute myeloid leukemia: implications for immunotherapy. J. Clin. Oncol. 39, 419. https://doi.org/10.1200%2FJCO.20.00475 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kabel, A., Zamzami, F., Al-Talhi, M., Al-Dwila, K. & Hamza, R. Acute myeloid leukemia: a focus on risk factors, clinical presentation, diagnosis and possible lines of management. Cancer Res. Treat. 5, 62–67. https://doi.org/10.12691/jcrt-5-2-4 (2017).Article 
CAS 

Google Scholar 
Le Dieu, R. et al. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood. 114, 3909–3916. https://doi.org/10.1182/blood-2009-02-206946 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Santos, F. et al. Severe necrotizing stomatitis and osteomyelitis after chemotherapy for acute leukaemia. Aust Dent. J. 54, 262–265. https://doi.org/10.1111/j.1834-7819.2009.01129.x (2009).Article 
CAS 
PubMed 

Google Scholar 
Pimenta, D. B. et al. The bone marrow microenvironment mechanisms in acute myeloid leukemia. Front. Cell. Dev. Biol. 9, 764698. https://doi.org/10.3389/fcell.2021.764698 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Isidori, A. et al. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment. Expert Rev. Hematol. 7, 807–818. https://doi.org/10.1586/17474086.2014.958464 (2014).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y., Bewersdorf, J. P., Stahl, M. & Zeidan, A. M. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: the dawn of a new era? Blood Rev. 34, 67–83 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gill, S. et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells. Blood J. Am. Soc. Hematol. 123, 2343–2354. https://doi.org/10.1182/blood-2013-09-529537 (2014).Article 
CAS 

Google Scholar 
Liu, Z., Lei, W., Wang, H., Liu, X. & Fu, R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp. Hematol. Oncol. 13, 22. https://doi.org/10.1186/s40164-024-00490-x (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Frenay, J. et al. IL-1RAP, a key therapeutic target in cancer. Int. J. Mol. Sci. 23, 14918 (2022). https://www.mdpi.com/1422-0067/23/23/14918#Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Järås, M. et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc. Natl. Acad. Sci. 107, 16280–16285. https://doi.org/10.1073/pnas.1004408107 (2010).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Warda, W. et al. CML hematopoietic stem cells expressing IL1RAP can be targeted by chimeric antigen receptor–engineered T cells. Cancer Res. 79, 663–675. https://doi.org/10.1158/0008-5472.CAN-18-1078 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ågerstam, H. et al. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc. Natl. Acad. Sci. 112, 10786–10791. https://doi.org/10.1073/pnas.1422749112 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, K. et al. IL1RAP as a surface marker for leukemia stem cells is related to clinical phase of chronic myeloid leukemia patients. Int. J. Clin. Exp. Med. 7, 4787 (2014).ADS 
PubMed 
PubMed Central 

Google Scholar 
Trad, R. et al. Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia. J. Immunother. Cancer 10 (2022).Zhang, Y. et al. IL1RAP-specific T cell engager depletes acute myeloid leukemia stem cells. J. Hematol. Oncol. 17, 67. https://doi.org/10.1186/s13045-024-01586-x (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sainson, R. C. et al. ADV101, a first-in-class IL-1RAP ADC demonstrates significant anti-tumor activity in solid tumor models. Cancer Res. 84, 2360–2360. https://doi.org/10.1158/1538-7445.AM2024-2360 (2024).Article 

Google Scholar 
Wu, X. et al. Advances in drug delivery systems for the treatment of acute myeloid leukemia. Small. 2403409 https://doi.org/10.1002/smll.202403409 (2024).Li, F. et al. Recent advances in material technology for leukemia treatments. Adv. Mater., 2313955 (2024).Sudo, K. et al. Human-derived fusogenic peptides for the intracellular delivery of proteins. J. Control Release. 255, 1–11. https://doi.org/10.1016/j.jconrel.2017.03.398 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wadia, J. S., Stan, R. V. & Dowdy, S. F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10, 310–315. https://doi.org/10.1038/nm996 (2004).Article 
CAS 
PubMed 

Google Scholar 
Kaplan, I. M., Wadia, J. S. & Dowdy, S. F. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control Release. 102, 247–253. https://doi.org/10.1016/j.jconrel.2004.10.018 (2005).Article 
CAS 
PubMed 

Google Scholar 
Nakase, I. et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10, 1011–1022. https://doi.org/10.1016/j.ymthe.2004.08.010 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lim, J. P. & Gleeson, P. A. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell. Biol. 89, 836–843. https://doi.org/10.1038/icb.2011.20 (2011).Article 
CAS 
PubMed 

Google Scholar 
Maxfield, F. R. & Yamashiro, D. J. Endosome acidification and the pathways of receptor-mediated endocytosis. Immunobiol. Proteins pept. IV. 189–198. https://doi.org/10.1007/978-1-4684-5442-0_16 (1987).Huotari, J. & Helenius, A. Endosome maturation. EMBO j. 30, 3481–3500. https://doi.org/10.1038/emboj.2011.286 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ahmad, A., Khan, J. M. & Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochim. 160, 61–75. https://doi.org/10.1016/j.biochi.2019.02.012 (2019).Article 
CAS 

Google Scholar 
Varkouhi, A. K., Scholte, M., Storm, G. & Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control Release. 151, 220–228. https://doi.org/10.1016/j.jconrel.2010.11.004 (2011).Article 
CAS 
PubMed 

Google Scholar 
Lönn, P. et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci. Rep. 6, 32301. https://doi.org/10.1038/srep32301 (2016).Suzuki, M., Iwaki, K., Kikuchi, M., Fujiwara, K. & Doi, N. Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular delivery of TAT-fused proteins. Biochem. Biophys. Res. Commun. 586, 63–67. https://doi.org/10.1016/j.bbrc.2021.11.065 (2022).Article 
CAS 
PubMed 

Google Scholar 
Nakamura, M., Fujiwara, K. & Doi, N. Cytoplasmic delivery of siRNA using human-derived membrane penetration-enhancing peptide. J. Nanobiotechnol. 20, 458. https://doi.org/10.1186/s12951-022-01667-4 (2022).Article 
CAS 

Google Scholar 
Sørensen, H. P., Sperling-Petersen, H. U. & Mortensen, K. K. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif. 32, 252–259. https://doi.org/10.1016/j.pep.2003.07.001 (2003).Article 
CAS 
PubMed 

Google Scholar 
Farokhi-Fard, A. et al. Bacterial production and biophysical characterization of a hard-to-fold scFv against myeloid leukemia cell surface marker, IL-1RAP. Mol. Biol. Rep. 50, 1191–1202. https://doi.org/10.1007/s11033-022-07972-3 (2023).Article 
CAS 
PubMed 

Google Scholar 
Jain, A. & Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Controlled Release. 245, 27–40 (2017).Article 
CAS 

Google Scholar 
Rinne, J. et al. 188. Internalization of novel delivery vector TAT-streptavidin into human cells. Mol. Ther. 13, S73, (2006). https://doi.org/10.1016/j.ymthe.2006.08.212Kipriyanov, S. M. et al. Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain fv fragment–core streptavidin fusion. Protein Eng. Des. Sel. 9, 203–211. https://doi.org/10.1093/protein/9.2.203 (1996).Article 
CAS 

Google Scholar 
López-Andarias, J. et al. Cell-penetrating streptavidin: a general tool for bifunctional delivery with spatiotemporal control, mediated by transport systems such as adaptive benzopolysulfane networks. J. Am. Chem. Soc. 142, 4784–4792. https://doi.org/10.1021/jacs.9b13621 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jain, A. & Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Control Release. 245, 27–40. https://doi.org/10.1016/j.jconrel.2016.11.016 (2017).Article 
CAS 
PubMed 

Google Scholar 
Cheal, S. M., Chung, S. K., Vaughn, B. A., Cheung, N. K. V. & Larson, S. M. Pretargeting: a path forward for radioimmunotherapy. J. Nucl. Med. 63, 1302–1315. https://doi.org/10.2967/jnumed.121.262186 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sun, W., Fletcher, D., van Heeckeren, R. C. & Davis, P. B. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin. J. Drug Target. 20, 678–690. https://doi.org/10.3109/1061186X.2012.712128 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Erazo-Oliveras, A., Muthukrishnan, N., Baker, R., Wang, T. Y. & Pellois, J. P. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharm. 5, 1177–1209. https://doi.org/10.3390/ph5111177 (2012).Article 
CAS 

Google Scholar 
Boado, R. J. et al. Genetic engineering, expression, and activity of a chimeric monoclonal antibody – avidin fusion protein for receptor-mediated delivery of biotinylated drugs in humans. Bioconjug. Chem. 19, 731–739. https://doi.org/10.1021/bc7004076 (2008).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Q. H., Lu, J. Z., Hui, E. K. W., Boado, R. J. & Pardridge, W. M. Delivery of a peptide radiopharmaceutical to brain with an IgG-avidin fusion protein. Bioconjug. Chem. 22, 1611–1618. https://doi.org/10.1021/bc200174x (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Demonte, D., Dundas, C. M. & Park, S. Expression and purification of soluble monomeric streptavidin in Escherichia coli. Appl. Microbiol. Biotechnol. 98, 6285–6295. https://doi.org/10.1007/s00253-014-5682-y (2014).Article 
CAS 
PubMed 

Google Scholar 
Trad, R. et al. Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia. J. Immunother Cancer. 10 https://doi.org/10.1136%2Fjitc-2021-004222 (2022).Houtsma, R. et al. CombiFlow: combinatorial AML-specific plasma membrane expression profiles allow longitudinal tracking of clones. Blood Adv. 6, 2129–2143. https://doi.org/10.1182/bloodadvances.2021005018 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barreyro, L. et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood J. Am. Soc. Hematol. 120, 1290–1298. https://doi.org/10.1182/blood-2012-01-404699 (2012).Article 
CAS 

Google Scholar 
Kim, J. W. et al. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatol. 39, 518–527. https://doi.org/10.1002/hep.20053 (2004).Article 
CAS 

Google Scholar 
Zhang, H. F. et al. Proteomic screens for suppressors of anoikis identify IL1RAP as a promising surface target in ewing sarcoma. Cancer Discov. 11, 2884–2903. https://doi.org/10.1158/2159-8290.CD-20-1690 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. et al. Innate immune mediator, Interleukin-1 receptor accessory protein (IL1RAP), is expressed and pro-tumorigenic in pancreatic cancer. J. Hematol. Oncol. 15, 70. https://doi.org/10.1186/s13045-022-01286-4 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Sci. 321, 1801–1806. https://doi.org/10.1126/science.1164368 (2008).Article 
ADS 
CAS 

Google Scholar 
Li, F., Zhang, W., Wang, M. & Jia, P. IL1RAP regulated by PRPRD promotes gliomas progression via inducing neuronal synapse development and neuron differentiation in vitro. Pathol. Res. Pract. 216, 153141. https://doi.org/10.1016/j.prp.2020.153141 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zheng, P. et al. Synthetic human monoclonal antibody targets hIL1 receptor accessory protein chain with therapeutic potential in triple-negative breast cancer. Biomed. Pharmacother. 107, 1064–1073. https://doi.org/10.1016/j.biopha.2018.07.099 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rydberg Millrud, C. et al. Blockade of IL-1α and IL-1β signaling by the anti-IL1RAP antibody nadunolimab (CAN04) mediates synergistic anti-tumor efficacy with chemotherapy. Cancer Immunol. Immunother. 72, 667–678. https://doi.org/10.1146/annurev.immunol.021908.132612 (2023).Article 
CAS 
PubMed 

Google Scholar 
Liu, F. et al. SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis. Oncogene. 37, 2394–2409. https://doi.org/10.1038/s41388-017-0119-6 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lv, Q., Xia, Q., Li, A. & Wang, Z. The potential role of IL1RAP on tumor microenvironment-related inflammatory factors in stomach adenocarcinoma. Technol. Cancer Res. Treat. 20, 1533033821995282. https://doi.org/10.1177/1533033821995282 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nakase, I. et al. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochem. 46, 492–501. https://doi.org/10.1021/bi0612824 (2007).Article 
CAS 

Google Scholar 
Suzuki, T. et al. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277, 2437–2443. https://doi.org/10.1074/jbc.M110017200 (2002).Article 
CAS 
PubMed 

Google Scholar 
Baler, K. et al. Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study. J. Phys. Chem. B. 118, 921–930. https://doi.org/10.1021/jp409936v (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Salama, M. M., Aborehab, N. M., Mahdy, E., Zayed, N. M., Ezzat, S. M. & A. & Nanotechnology in leukemia: diagnosis, efficient-targeted drug delivery, and clinical trials. Eur. J. Med. Res. 28, 566 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Shen, J. et al. Advances of nanoparticles for leukemia treatment. ACS Biomater. Sci. Eng. 6, 6478–6489 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kim, Y. H. Heme oxygenase 1-targeted hybrid nanoparticle for chemo-and immuno-combination therapy in acute myelogenous leukemia. (2020). https://doi.org/10.1002/advs.202000487Ying-ping Jiang, J. Y. T. Holger Karsunky. Antibodies that bind membrane-bound il1rap. (Filing date: 2013-12-20).Lim, K. H., Huang, H., Pralle, A. & Park, S. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol. Bioeng. 110, 57–67. https://doi.org/10.1002/bit.24605 (2013).Article 
CAS 
PubMed 

Google Scholar 
Rahmati, S. et al. Computational engineering of protein L to achieve an optimal affinity chromatography resin for purification of antibody fragments. Anal. Chem. 93, 15253–15261. https://doi.org/10.1021/acs.analchem.1c01871 (2021).Article 
CAS 
PubMed 

Google Scholar 
Rahmati, S. et al. Computational designing of the ligands of protein L affinity chromatography based on molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn.. 1–11. https://doi.org/10.1080/07391102.2023.2268219 (2023).Heo, L., Park, H., Seok, C. & GalaxyRefine Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 41, W384–W388. https://doi.org/10.1093/nar/gkt458 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35 https://doi.org/10.1093/nar/gkm290 (2007). W407-W410.Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Select. 8, 127–134 (1995).Article 
CAS 

Google Scholar 
Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R. & Warwicker, J. Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinform. 33, 3098–3100. https://doi.org/10.1093/bioinformatics/btx345 (2017).Article 
CAS 

Google Scholar 
Nguyen, M. N. et al. AllerCatPro 2.0: a web server for predicting protein allergenicity potential. Nucleic Acids res. 50, W36-W43. https://doi.org/10.1093/nar/gkac446 (2022).Jouybari, R. M., Sadeghi, A., Khansarinejad, B., Abbasian, S. S. & Abtahi, H. Production of recombinant streptavidin and optimization of refolding conditions for recovery of biological activity. Rep. Biochem. Mol. Biol. 6, 178 (2018).CAS 

Google Scholar 
Won, J. S., Kang, H. W., Nam, P. W. & Choe, M. H. B3 (Fab)-streptavidin tetramer has higher binding avidity than B3 (scFv)-streptavidin tetramer. Bull. Korean Chem. Soc. 30, 1101–1106. https://doi.org/10.5012/bkcs.2009.30.5.1101 (2009).Article 
CAS 

Google Scholar 
Sano, T., Smith, C. L. & Cantor, C. R. Expression and purification of recombinant streptavidin-containing chimeric proteins. Recomb Protein Protoc. : Detect. isol. 119–128. https://doi.org/10.1385/0-89603-481-X:119 (1997).Won, J. S., Kang, H. W., Nam, P. W. & Choe, M. H. B3 (Fab)-streptavidin tetramer has higher binding avidity than B3 (scFv)-streptavidin tetramer. Bull. Korean Chem. Soc. 30, 1101–1106 (2009).Article 
CAS 

Google Scholar 
Sørensen, H. P., Sperling-Petersen, H. U. & Mortensen, K. K. Dialysis strategies for protein refolding: preparative streptavidin production. Protein Expr. Purif. 31, 149–154. https://doi.org/10.1016/S1046-5928(03)00133-5 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. Guidelines for cell viability assays. Food Front. 1, 332–349. https://doi.org/10.1002/fft2.44 (2020).Article 

Google Scholar 

Hot Topics

Related Articles