Plaid masking explained with input-dependent dendritic nonlinearities

Marr, David. Vision (W. H. Freeman, 1982).
Google Scholar 
Campbell, F. W. & Robson, J. G. Application of Fourier analysis to the visibility of gratings. J. Physiol. 197(3), 551–566 (1968).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blakemore, C. & Campbell, F. W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 203(1), 237–260 (1969).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sachs, Murray B., Nachmias, Jacob & Robson, John G. Spatial-Frequency Channels in Human Vision. J. Opt. Soc. Am. 61(9), 1176–1186 (1971).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Graham, Norma & Nachmias, Jacob. Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple-channels models. Vis. Res. 11(3), 251–259 (1971).Article 
CAS 
PubMed 

Google Scholar 
Carter, Barbara E. & Bruce Henning, G. The detection of gratings in narrow-band visual noise. J. Physiol. 219(2), 355–365 (1971).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nachmias, Jacob & Sansbury, Richard V. Grating contrast: Discrimination may be better than detection. Vis. Res. 14(10), 1039–1042 (1974).Article 
CAS 
PubMed 

Google Scholar 
Graham, Norma. Visual Pattern Analyzers (Oxford University Press, 1989).Book 

Google Scholar 
Schütt, Heiko H. & Wichmann, Felix A. An image-computable psychophysical spatial vision model. J. Vis. 17(12(12)), 1–35 (2017).
Google Scholar 
Martinez-Garcia, M., Cyriac, P., Batard, T., Bertalmío, M. & Malo, J. Derivatives and inverse of cascaded linear+nonlinear neural models. PLoS One 13(10), 1–49 (2018) (10).Article 

Google Scholar 
Marina Martinez-Garcia, Marcelo Bertalmío, and Jesús Malo. In praise of artifice reloaded: Caution with natural image databases in modeling vision. Front. Neurosci. 13 (2019).Bruce Henning, G., Gevene Hertz, B. & Broadbent, D. .E. Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vis. Res. 15(8–9), 887–897 (1975).Article 

Google Scholar 
Nachmias, Jacob & Rogowitz, Bernice E. Masking by spatially-modulated gratings. Vis. Res. 23(12), 1621–1629 (1983).Article 
CAS 
PubMed 

Google Scholar 
Perkins, Mark E. & Landy, Michael S. Nonadditivity of masking by narrow-band noises. Vis. Res. 31(6), 1053–1065 (1991).Article 
CAS 
PubMed 

Google Scholar 
Bruce Henning, G. & Wichmann, Felix A. Some observations on the pedestal effect. J. Vis. 7(13), 1–15 (2007).
Google Scholar 
Derrington, A. .M. & Bruce Henning, G. Some observations on the masking effects of two-dimensional stimuli. Vis. Res. 29(2), 241–246 (1989).Article 
CAS 
PubMed 

Google Scholar 
Wandell, B. A. Foundations of Vision (Sinauer Associates, 1995).
Google Scholar 
Stuart, Greg J. & Spruston, Nelson. Dendritic integration: 60 years of progress. Nat. Neurosci. 18(12), 1713–1721 (2015).Article 
CAS 
PubMed 

Google Scholar 
McCulloch, Warren S. & Pitts, Walter. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).Article 
MathSciNet 

Google Scholar 
Hubel, David H. & Wiesel, Torsten N. Receptive fields of single neurones in the cat’s striate cortex.. J. Physiol. 148(3), 574–591 (1959).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215 (1968).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hochstein, S. & Shapley, R. M. Linear and nonlinear spatial subunits in y cat retinal ganglion cells. J. Physiol. 262(2), 265–284 (1976).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chichilnisky, E. J. A simple white noise analysis of neuronal lightresponses. Netw. Comput. Neural Syst. 12(2), 199 (2001).Article 
CAS 

Google Scholar 
Pillow, Jonathan W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population.. Nature 454(7207), 995–999 (2008).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vintch, Brett, Movshon, J Anthony & Simoncelli, Eero P. A convolutional subunit model for neuronal responses in macaque v1. J. Neurosci. 35(44), 14829–14841 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Poirazi, Panayiota & Papoutsi, Athanasia. Illuminating dendritic function with computational models. Nat. Rev. Neurosci. 21(6), 303–321 (2020).Article 
CAS 
PubMed 

Google Scholar 
Brombas, Arne, Zhou, Xiangyu & Williams, Stephen R. Light-evoked dendritic spikes in sustained but not transient rabbit retinal ganglion cells. Neuron 110(17), 2802–2814 (2022).Article 
CAS 
PubMed 

Google Scholar 
Larkum, M. E. Are dendrites conceptually useful?. Neuroscience 489, 4–14 (2022).Article 
CAS 
PubMed 

Google Scholar 
Olshausen, Bruno A. & Field, David J. How close are we to understanding V1?. Neural Comput. 17(8), 1665–1699 (2005).Article 
PubMed 

Google Scholar 
Olshausen, B. A. and Field, D.J. What is the other 85 percent of V1 doing? In 23 Problems in Systems Neuroscience (Leo van Hemmen, J. and Sejnowski, T. J. eds), (Oxford University Press, 2006).Carandini, Matteo et al. Do we know what the early visual system does?. J. Neurosci. 25(46), 10577–10597 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carandini, Matteo. From circuits to behavior: a bridge too far?. Nat. Neurosci. 15(4), 507–509 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bruno A Olshausen. 20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked. In 20 Years of Computational Neuroscience, 243–270 (Springer, 2013).Cadena, Santiago A. et al. Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Comput. Biol. 15(4), e1006897 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Coen-Cagli, Ruben, Dayan, Peter & Schwartz, Odelia. Cortical surround interactions and perceptual salience via natural scene statistics. PLoS Comput. Biol. 8(3), e1002405 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jansen, M. et al. Cortical balance between on and off visual responses is modulated by the spatial properties of the visual stimulus. Cereb. Cortex 29(1), 336–355 (2018).Article 
PubMed Central 

Google Scholar 
Almasi, Ali et al. How stimulus statistics affect the receptive fields of cells in primary visual cortex. J. Neurosci. 42(26), 5198–5211 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Malo, J., Esteve-Taboada, J. J. & Bertalmio, M. Cortical divisive normalization from Wilson-Cowan neural dynamics. J. Nonlinear Sci. 34(35), 1–36 (2024).MathSciNet 

Google Scholar 
Bertalmío, Marcelo et al. Evidence for the intrinsically nonlinear nature of receptive fields in vision. Sci. Rep. 10(1), 1–15 (2020).Article 

Google Scholar 
Ilias Rentzeperis, Dario Prandi, and Marcelo Bertalmi. A neural model for v1 that incorporates dendritic nonlinearities and back-propagating action potentials. bioRxiv (2024).Kane, David & Bertalmío, Marcelo. A reevaluation of Whittle (1986, 1992) reveals the link between detection thresholds, discrimination thresholds, and brightness perception. J. Vis. 19(1), 16–16 (2019).Article 
PubMed 

Google Scholar 
J. Kremkow, et al. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights. Proc. Natl. Acad. Sci., 201310442 (2014).Betz, Torsten, Shapley, Robert, Wichmann, Felix A. & Maertens, Marianne. Testing the role of luminance edges in White’s illusion with contour adaptation. J. Vis. 15(11), 14–14 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Raúl Luna, Ignacio Serrano-Pedraza, and Marcelo Bertalmío. Overcoming the limitations of motion sensor models by considering dendritic computations. bioRxiv (2024).Raúl Luna, Itziar Zabaleta, and Marcelo Bertalmío. State-of-the-art image and video quality assessment with a metric based on an intrinsically non-linear neural summation model. Front. Neurosci., 17 (2023).Ringach, Dario L. Mapping receptive fields in primary visual cortex. J. Physiol. 558(3), 717–728 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goldin, Matías A. et al. Context-dependent selectivity to natural images in the retina. Nat. Commun. 13(1), 5556 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wienbar, Sophia & Schwartz, Gregory W. The dynamic receptive fields of retinal ganglion cells. Prog. Retin Eye Res. 67, 102–117 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Alexander Heitman, Nora Brackbill, Martin Greschner, Alexander Sher, Alan M Litke, and EJ Chichilnisky. Testing pseudo-linear models of responses to natural scenes in primate retina. BioRxiv, 045336 (2016).Maheswaranathan, Niru et al. Interpreting the retinal neural code for natural scenes: From computations to neurons. Neuron 111(17), 2742–2755 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles