Seeing the unseen in characterizing RNA editome during rice endosperm development

Zhao, M., Lin, Y. & Chen, H. Improving nutritional quality of rice for human health. Theor. Appl. Genet. 133, 1397–1413 (2020).Article 
PubMed 

Google Scholar 
Zhou, S. et al. Transcriptional and post‐transcriptional regulation of heading date in rice. N. Phytologist 230, 943–956 (2021).Article 

Google Scholar 
Chen, H., He, H., Zhou, F., Yu, H. & Deng, X. W. Development of genomics-based genotyping platforms and their applications in rice breeding. Curr. Opin. Plant Biol. 16, 247–254 (2013).Article 
PubMed 

Google Scholar 
An, L. et al. Embryo-endosperm interaction and its agronomic relevance to rice quality. Front. Plant Sci. 11, 587641 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhou, S.-R., Yin, L.-L. & Xue, H.-W. Functional genomics based understanding of rice endosperm development. Curr. Opin. Plant Biol. 16, 236–246 (2013).Article 
PubMed 

Google Scholar 
Hoshikawa, K. Anthesis, fertilization and development of caryopsis. In Science of the Rice Plant. Vol. I. Morphology, T. Matsuo and K. Hoshikawa, eds (Tokyo: Nobunkyo), pp. 339–376. (1993).Matsui, T., Kobayasi, K., Yoshimoto, M., Hasegawa, T. & Tian, X. Dependence of pollination and fertilization in rice (Oryza sativa L.) on floret height within the canopy. Field Crops Res. 249, 107741 (2020).Article 

Google Scholar 
Wu, X., Liu, J., Li, D. & Liu, C. M. Rice caryopsis development II: Dynamic changes in the endosperm. J. Integr. Plant Biol. 58, 786–798 (2016).Article 
PubMed 

Google Scholar 
Domínguez, F. & Cejudo, F. J. Programmed cell death (PCD): an essential process of cereal seed development and germination. Front. Plant Sci. 5, 366 (2014).PubMed 
PubMed Central 

Google Scholar 
Møller, I. M., Rasmusson, A. G. & Van Aken, O. Plant mitochondria–past, present and future. Plant J. 108, 912–959 (2021).Article 
PubMed 

Google Scholar 
Farooq, M. A., Zhang, X., Zafar, M. M., Ma, W. & Zhao, J. Roles of reactive oxygen species and mitochondria in seed germination. Front. Plant Sci. 12, 781734 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Blokhina, O. & Fagerstedt, K. V. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiologia Plant. 138, 447–462 (2010).Article 

Google Scholar 
Wu, J. et al. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res. 25, 621–633 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Giegé, P., Grienenberger, J. & Bonnard, G. Cytochrome c biogenesis in mitochondria. Mitochondrion 8, 61–73 (2008).Article 
PubMed 

Google Scholar 
Kim, M. et al. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18, 2341–2355 (2006).Article 
PubMed 
PubMed Central 

Google Scholar 
Elena‐Real, C. A. et al. Proposed mechanism for regulation of H2O2‐induced programmed cell death in plants by binding of cytochrome c to 14‐3‐3 proteins. Plant J. 106, 74–85 (2021).Article 
PubMed 

Google Scholar 
Sultan, L. D. et al. The reverse transcriptase/RNA maturase protein MatR is required for the splicing of various group II introns in Brassicaceae mitochondria. Plant Cell 28, 2805–2829 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Brown, G. G., Colas des Francs-Small, C. & Ostersetzer-Biran, O. Group II intron splicing factors in plant mitochondria. Front. Plant Sci. 5, 35 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Ghifari, A. S., Saha, S. & Murcha, M. W. The biogenesis and regulation of the plant oxidative phosphorylation system. Plant Physiol. 192, 728 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Janska, H. & Kwasniak, M. Mitoribosomal regulation of OXPHOS biogenesis in plants. Front. Plant Sci. 5, 79 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Covello, P. S. & Gray, M. W. RNA editing in plant mitochondria. Nature 341, 662–666 (1989).Article 
PubMed 

Google Scholar 
Hiesel, R., Wissinger, B., Schuster, W. & Brennicke, A. RNA editing in plant mitochondria. Science 246, 1632–1634 (1989).Article 
PubMed 

Google Scholar 
Bonnard, G., Gualberto, J. M., Lamattina, L., Grienenberger, J. M. & Brennlcke, A. RNA editing in plant mitochondria. Crit. Rev. Plant Sci. 10, 503–524 (1992).Article 

Google Scholar 
Takenaka, M., Jörg, A., Burger, M. & Haag, S. RNA editing mutants as surrogates for mitochondrial SNP mutants. Plant Physiol. Biochem. 135, 310–321 (2019).Article 
PubMed 

Google Scholar 
Lu, Y. RNA editing of plastid-encoded genes. Photosynthetica 56, 48–61 (2018).Article 

Google Scholar 
Chateigner-Boutin, A.-L. & Small, I. Plant RNA editing. RNA Biol. 7, 213–219 (2010).Article 
PubMed 

Google Scholar 
Okuda, K. et al. Quantitative analysis of motifs contributing to the interaction between PLS‐subfamily members and their target RNA sequences in plastid RNA editing. Plant J. 80, 870–882 (2014).Article 
PubMed 

Google Scholar 
Small, I. D., Schallenberg‐Rüdinger, M., Takenaka, M., Mireau, H. & Ostersetzer‐Biran, O. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 101, 1040–1056 (2020).Article 
PubMed 

Google Scholar 
Andrés-Colás, N. et al. Multiple PPR protein interactions are involved in the RNA editing system in Arabidopsis mitochondria and plastids. Proc. Natl Acad. Sci. 114, 8883–8888 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Guillaumot, D. et al. Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria. Proc. Natl Acad. Sci. 114, 8877–8882 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. Maize PPR-E proteins mediate RNA C-to-U editing in mitochondria by recruiting the trans deaminase PCW1. Plant Cell 35, 529–551 (2023).Article 
PubMed 

Google Scholar 
Wang, Y. et al. Multiple factors interact in editing of PPR-E+-targeted sites in maize mitochondria and plastids. Plant Commun. 5(5), 100836 (2024).Yang, Y.-Z. et al. GRP23 plays a core role in E-type editosomes via interacting with MORFs and atypical PPR-DYWs in Arabidopsis mitochondria. Proc. Natl Acad. Sci. 119, e2210978119 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, J. et al. Maize PPR278 functions in mitochondrial RNA splicing and editing. Int. J. Mol. Sci. 23, 3035 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, H. et al. Rice FLOURY ENDOSPERM22, encoding a pentatricopeptide repeat protein, is involved in both mitochondrial RNA splicing and editing and is crucial for endosperm development. J. Integr. Plant Biol. 65, 755–771 (2023).Article 
PubMed 

Google Scholar 
Lan, J. et al. Young Leaf White Stripe encodes a P‐type PPR protein required for chloroplast development. J. Integr. Plant Biol. 65, 1687–1702 (2023).Article 
PubMed 

Google Scholar 
Leu, K.-C., Hsieh, M.-H., Wang, H.-J., Hsieh, H.-L. & Jauh, G.-Y. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing. RNA Biol. 13, 593–604 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Sun, J., Tian, Y., Lian, Q. & Liu, J.-X. Mutation of DELAYED GREENING1 impairs chloroplast RNA editing at elevated ambient temperature in Arabidopsis. J. Genet. Genomics 47, 201–212 (2020).Article 
PubMed 

Google Scholar 
Zhang, H.-D. et al. PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana. Photosynthesis Res. 126, 311–321 (2015).Article 

Google Scholar 
Pyo, Y. J., Kwon, K.-C., Kim, A. & Cho, M. H. Seedling Lethal1, a pentatricopeptide repeat protein lacking an E/E+ or DYW domain in Arabidopsis, is involved in plastid gene expression and early chloroplast development. Plant Physiol. 163, 1844–1858 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Toma-Fukai, S. et al. Structural insight into the activation of an Arabidopsis organellar C-to-U RNA editing enzyme by active site complementation. Plant Cell 35, 1888–1900 (2023).Article 
PubMed 

Google Scholar 
Yan, J., Zhang, Q. & Yin, P. RNA editing machinery in plant organelles. Sci. China Life Sci. 61, 162–169 (2018).Article 
PubMed 

Google Scholar 
Sosso, D. et al. PPR2263, a DYW-subgroup pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrion biogenesis, and maize growth. Plant Cell 24, 676–691 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Dai, D. et al. Maize pentatricopeptide repeat protein DEK53 is required for mitochondrial RNA editing at multiple sites and seed development. J. Exp. Bot. 71, 6246–6261 (2020).Article 
PubMed 

Google Scholar 
Wang, G. et al. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. N. Phytologist 214, 1563–1578 (2017).Article 

Google Scholar 
Zang, J., Zhang, T., Zhang, Z., Liu, J. & Chen, H. DEFECTIVE KERNEL 56 functions in mitochondrial RNA editing and maize seed development. Plant Physiol. 194,1593–1610 (2024).Sun, F. et al. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant J. 84, 283–295 (2015).Article 
PubMed 

Google Scholar 
Yang, Y. Z. et al. The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. N. Phytologist 214, 782–795 (2017).Article 

Google Scholar 
Ding, S. et al. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. J. Plant Physiol. 240, 152992 (2019).Article 
PubMed 

Google Scholar 
Ren, R. C. et al. Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize. J. Exp. Bot. 70, 6163–6179 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. Empty Pericarp21 encodes a novel PPR-DYW protein that is required for mitochondrial RNA editing at multiple sites, complexes I and V biogenesis, and seed development in maize. PLoS Genet. 15, e1008305 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, X. J. et al. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J. 79, 797–809 (2014).Article 
PubMed 

Google Scholar 
Liu, Y.-J., Xiu, Z.-H., Meeley, R. & Tan, B.-C. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 25, 868–883 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, S. R. et al. Rice OGR1 encodes a pentatricopeptide repeat–DYW protein and is essential for RNA editing in mitochondria. Plant J. 59, 738–749 (2009).Article 
PubMed 

Google Scholar 
Li, M. et al. Plant editosome database: a curated database of RNA editosome in plants. Nucleic Acids Res. 47, D170–D174 (2019).Article 
PubMed 

Google Scholar 
Notsu, Y. et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics 268, 434–445 (2002).Article 
PubMed 

Google Scholar 
Wu, C. S. & Chaw, S. M. Evolution of mitochondrial RNA editing in extant gymnosperms. Plant J. 111, 1676–1687 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Maldonado, M., Abe, K. M. & Letts, J. A. A structural perspective on the RNA editing of plant respiratory complexes. Int. J. Mol. Sci. 23, 684 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Ren, R. C. et al. The novel E-subgroup pentatricopeptide repeat protein DEK55 is responsible for RNA editing at multiple sites and for the splicing of nad1 and nad4 in maize. BMC Plant Biol. 20, 1–15 (2020).Article 

Google Scholar 
Fan, K. et al. Maize defective kernel605 encodes a canonical DYW-Type PPR protein that edits a conserved site of nad1 and is essential for seed nutritional quality. Plant Cell Physiol. 61, 1954–1966 (2020).Article 
PubMed 

Google Scholar 
Zhao, J. et al. EMP80 mediates the C‐to‐U editing of nad7 and atp4 and interacts with ZmDYW2 in maize mitochondria. N. Phytologist 234, 1237–1248 (2022).Article 

Google Scholar 
Liu, X.-Y. et al. ZmPPR26, a DYW-type pentatricopeptide repeat protein, is required for C-to-U RNA editing at atpA-1148 in maize chloroplasts. J. Exp. Bot. 72, 4809–4821 (2021).Article 
PubMed 

Google Scholar 
Yura, K. & Go, M. Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles. BMC Plant Biol. 8, 1–11 (2008).Article 

Google Scholar 
Bolhuis, P. Sampling kinetic protein folding pathways using all-atom models. Lect. Notes Phys. 703, 393–433 (2006).Article 

Google Scholar 
Xu, C. et al. DEK46 performs C‐to‐U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. Plant J. 103, 1767–1782 (2020).Article 
PubMed 

Google Scholar 
Jestin, J. L., Dème, E. & Jacquier, A. Identification of structural elements critical for inter–domain interactions in a group II self‐splicing intron. EMBO J. 16(10), 2945–2954 (1997).Costa, M. & Michel, F. O. Frequent use of the same tertiary motif by self‐folding RNAs. EMBO J. 14, 1276–1285 (1995).Article 
PubMed 
PubMed Central 

Google Scholar 
Ichinose, M. & Sugita, M. RNA editing and its molecular mechanism in plant organelles. Genes 8, 5 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Duan, Y., Tang, X. & Lu, J. Evolutionary driving forces of A‐to‐I editing in metazoans. Wiley Interdiscip. Rev. RNA 13, e1666 (2022).Article 
PubMed 

Google Scholar 
Wang, W., Wu, Y. & Messing, J. Genome-wide analysis of pentatricopeptide-repeat proteins of an aquatic plant. Planta 244, 893–899 (2016).Article 
PubMed 

Google Scholar 
Lurin, C. et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089–2103 (2004).Article 
PubMed 
PubMed Central 

Google Scholar 
Loiacono, F. V. et al. Emergence of novel RNA-editing sites by changes in the binding affinity of a conserved PPR protein. Mol. Biol. Evol. 39, msac222 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Sheahan, T. & Wieden, H.-J. Ribosomal protein S1 improves the protein yield of an in vitro reconstituted cell-free translation system. ACS Synth. Biol. 11, 1004–1008 (2022).Article 
PubMed 

Google Scholar 
Fargo, D. C., Boynton, J. E. & Gillham, N. W. Chloroplast ribosomal protein S7 of Chlamydomonas binds to chloroplast mRNA leader sequences and may be involved in translation initiation. Plant Cell 13, 207–218 (2001).Article 
PubMed 
PubMed Central 

Google Scholar 
Cukras, A. R., Southworth, D. R., Brunelle, J. L., Culver, G. M. & Green, R. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA: tRNA complex. Mol. Cell 12, 321–328 (2003).Article 
PubMed 

Google Scholar 
Liu, R. et al. The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. J. Exp. Bot. 71, 5495–5505 (2020).Article 
PubMed 

Google Scholar 
Takatsuka, A., Kazama, T. & Toriyama, K. Cytoplasmic male sterility-associated mitochondrial gene orf312 derived from rice (Oryza sativa L.) cultivar Tadukan. Rice 14, 1–11 (2021).Article 

Google Scholar 
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Hiratsuka, J. et al. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. MGG 217, 185–194 (1989).Article 
PubMed 

Google Scholar 
Kawahara, Y. et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 1–10 (2013).Article 

Google Scholar 
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Picardi, E. & Pesole, G. REDItools: high-throughput RNA editing detection made easy. Bioinformatics 29, 1813–1814 (2013).Article 
PubMed 

Google Scholar 
Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).Article 
PubMed 

Google Scholar 
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).Article 
PubMed 

Google Scholar 
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).Article 
PubMed 
PubMed Central 

Google Scholar 
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Robart, A. R., Chan, R. T., Peters, J. K., Rajashankar, K. R. & Toor, N. Crystal structure of a eukaryotic group II intron lariat. Nature 514, 193–197 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).Article 
PubMed 
PubMed Central 

Google Scholar 
Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).Article 
PubMed 
PubMed Central 

Google Scholar 
UniProt: the Universal Protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).Article 

Google Scholar 
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Maiti, R., Van Domselaar, G. H., Zhang, H. & Wishart, D. S. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32, W590–W594 (2004).Article 
PubMed 
PubMed Central 

Google Scholar 
Cheng, S. et al. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J. 85, 532–547 (2016).Article 
PubMed 

Google Scholar 
Gutmann, B. et al. The expansion and diversification of pentatricopeptide repeat RNA-editing factors in plants. Mol. Plant 13, 215–230 (2020).Article 
PubMed 

Google Scholar 
Yan, J. et al. Delineation of pentatricopeptide repeat codes for target RNA prediction. Nucleic Acids Res. 47, 3728–3738 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Armenteros, J. J. A. et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2, e201900429 (2019).Horton, P. et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585–W587 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Bannai, H., Tamada, Y., Maruyama, O., Nakai, K. & Miyano, S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18, 298–305 (2002).Article 
PubMed 

Google Scholar 
Chou, K.-C. & Shen, H.-B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PloS One 5, e11335 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Small, I., Peeters, N., Legeai, F. & Lurin, C. Predotar: a tool for rapidly screening proteomes for N‐terminal targeting sequences. Proteomics 4, 1581–1590 (2004).Article 
PubMed 

Google Scholar 
Chen, G., Zou, Y., Hu, J. & Ding, Y. Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. BMC Genomics 19, 1–14 (2018).Article 

Google Scholar 
Emanuelsson, O., Nielsen, H., Brunak, S. & Von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000).Article 
PubMed 

Google Scholar 
Gutmann, B., Millman, M., Vincis Pereira Sanglard, L., Small, I. & Colas des Francs-Small, C. The pentatricopeptide repeat protein MEF100 is required for the editing of four mitochondrial editing sites in Arabidopsis. Cells 10, 468 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 1–9 (2009).Article 

Google Scholar 
Chen, T. et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteom. Bioinforma. 19, 578–583 (2021).Article 

Google Scholar 
CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2024. Nucleic Acids Res. 52, D18–D32 (2024).Liu, K., Xie, B., Peng, L., Wu, Q. & Hu, J. Profiling of RNA editing events in plant organellar transcriptomes with high‐throughput sequencing. Plant J. 118, 345–357 (2024).Article 
PubMed 

Google Scholar 
Ming. Bioinfo-Ming/RiceEndospermRNAEditing: First release of codes in rice endosperm RNA editing analyses (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.13767801 (2024).

Hot Topics

Related Articles