Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis

Peoples, C., Medsger, T. A. Jr., Lucas, M., Rosario, B. L. & Feghali-Bostwick, C. A. Gender differences in systemic sclerosis: relationship to clinical features, serologic status and outcomes. J. Scleroderma Relat. Disord. 1, 177–240 (2016).PubMed 

Google Scholar 
Fan, Y., Bender, S., Shi, W. & Zoz, D. Incidence and prevalence of systemic sclerosis and systemic sclerosis with interstitial lung disease in the United States. J. Manag Care Spec. Pharm. 26, 1539–1547 (2020).PubMed 

Google Scholar 
Ferri, C. et al. Systemic sclerosis: demographic, clinical, and serologic features and survival in 1,012 Italian patients. Medicine 81, 139–153 (2002).Article 
PubMed 

Google Scholar 
Scussel-Lonzetti, L. et al. Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Med. (Baltim.) 81, 154–167 (2002).Article 

Google Scholar 
Meier, F. M. et al. Update on the profile of the EUSTAR cohort: an analysis of the EULAR Scleroderma Trials and Research group database. Ann. Rheum. Dis. 71, 1355–1360 (2012).Article 
PubMed 

Google Scholar 
Varga, J. & Abraham, D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117, 557–567 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barsotti, S. et al. One year in review 2019: systemic sclerosis. Clin. Exp. Rheumatol. 37, 3–14 (2019).PubMed 

Google Scholar 
Volkmann, E. R. & Fischer, A. Update on morbidity and mortality in systemic sclerosis-related interstitial lung disease. J. Scleroderma Relat. Disord. 6, 11–20 (2021).Article 
PubMed 

Google Scholar 
Tyndall, A. J. et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 69, 1809–1815 (2010).Article 
PubMed 

Google Scholar 
Rubio-Rivas, M., Royo, C., Simeon, C. P., Corbella, X. & Fonollosa, V. Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin Arthritis Rheum. 44, 208–219 (2014).Article 
PubMed 

Google Scholar 
McNearney, T. A. et al. Pulmonary involvement in systemic sclerosis: associations with genetic, serologic, sociodemographic, and behavioral factors. Arthritis Rheum. 57, 318–326 (2007).Article 
PubMed 

Google Scholar 
Steen, V. D. & Medsger, T. A. Changes in causes of death in systemic sclerosis, 1972-2002. Ann. Rheum. Dis. 66, 940–944 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Mouawad, J. E. & Feghali-Bostwick, C. The molecular mechanisms of systemic sclerosis-associated lung fibrosis. Int. J. Mol. Sci. 24 (2023).Rueda, B. et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum. Mol. Genet. 18, 2071–2077 (2009).Article 
CAS 
PubMed 

Google Scholar 
Tsuchiya, N. et al. Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann. Rheum. Dis. 68, 1375–1376 (2009).Article 
CAS 
PubMed 

Google Scholar 
Xu, Y., Wang, W., Tian, Y., Liu, J. & Yang, R. Polymorphisms in STAT4 and IRF5 increase the risk of systemic sclerosis: a meta-analysis. Int J. Dermatol. 55, 408–416 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dieude, P. et al. Phenotype-haplotype correlation of IRF5 in systemic sclerosis: role of 2 haplotypes in disease severity. J. Rheumatol. 37, 987–992 (2010).Article 
CAS 
PubMed 

Google Scholar 
Lafyatis, R. Transforming growth factor beta-at the centre of systemic sclerosis. Nat. Rev. Rheumatol. 10, 706–719 (2014).Article 
CAS 
PubMed 

Google Scholar 
Morris, E. et al. Endoglin promotes TGF-beta/Smad1 signaling in scleroderma fibroblasts. J. Cell Physiol. 226, 3340–3348 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Herrmann, K., Heckmann, M., Kulozik, M., Haustein, U. F. & Krieg, T. Steady-state mRNA levels of collagens I, III, fibronectin, and collagenase in skin biopsies of systemic sclerosis patients. J. Invest. Dermatol. 97, 219–222 (1991).Article 
CAS 
PubMed 

Google Scholar 
Garabrant, D. H. et al. Scleroderma and solvent exposure among women. Am. J. Epidemiol. 157, 493–500 (2003).Article 
PubMed 

Google Scholar 
Muntyanu, A. et al. Exposure to silica and systemic sclerosis: A retrospective cohort study based on the Canadian Scleroderma Research Group. Front Med. 9, 984907 (2022).Article 

Google Scholar 
Shivakumar, D. S., Kamath, N. S. & Naik, A. Silica associated systemic sclerosis: an occupational health hazard. BMJ Case Rep. 16 (2023).Lescoat, A. et al. Silica exposure and scleroderma: more bridges and collaboration between disciplines are needed. Am. J. Respir. Crit. Care Med. 201, 880–882 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Garrett, S. M., Baker Frost, D. & Feghali-Bostwick, C. The mighty fibroblast and its utility in scleroderma research. J. Scleroderma Relat. Disord. 2, 69–134 (2017).PubMed 

Google Scholar 
Morrisroe, K. & Nikpour, M. Cancer and scleroderma: recent insights. Curr. Opin. Rheumatol. 32, 479–487 (2020).Article 
PubMed 

Google Scholar 
Zhang, J. Q. et al. The risk of cancer development in systemic sclerosis: a meta-analysis. Cancer Epidemiol. 37, 523–527 (2013).Article 
PubMed 

Google Scholar 
Onishi, A., Sugiyama, D., Kumagai, S. & Morinobu, A. Cancer incidence in systemic sclerosis: meta-analysis of population-based cohort studies. Arthritis Rheum. 65, 1913–1921 (2013).Article 
PubMed 

Google Scholar 
Christenson, L. J. et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA 294, 681–690 (2005).Article 
CAS 
PubMed 

Google Scholar 
Weeding, E., Casciola-Rosen, L. & Shah, A. A. Cancer and Scleroderma. Rheum. Dis. Clin. North Am. 46, 551–564 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Bonifazi, M. et al. Systemic sclerosis (scleroderma) and cancer risk: systematic review and meta-analysis of observational studies. Rheumatology 52, 143–154 (2013).Article 
PubMed 

Google Scholar 
Lepri, G. et al. Systemic Sclerosis Association with Malignancy. Clin. Rev. Allergy Immunol. 63, 398–416 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mecoli, C. A., Rosen, A., Casciola-Rosen, L. & Shah, A. A. Advances at the interface of cancer and systemic sclerosis. J. Scleroderma Relat. Disord. 6, 50–57 (2021).Article 
PubMed 

Google Scholar 
Hoffmann-Vold, A. M. et al. Tracking impact of interstitial lung disease in systemic sclerosis in a complete nationwide cohort. Am. J. Respir. Crit. Care Med. 200, 1258–1266 (2019).Article 
PubMed 

Google Scholar 
Pezone, A. et al. Inflammation and DNA damage: cause, effect or both. Nat. Rev. Rheumatol. 19, 200–211 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kawanishi, S., Ohnishi, S., Ma, N., Hiraku, Y. & Murata, M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int. J. Mol. Sci. 18 (2017).Kay, J., Thadhani, E., Samson, L. & Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair. 83, 102673 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Igusa, T. et al. Autoantibodies and scleroderma phenotype define subgroups at high-risk and low-risk for cancer. Ann. Rheum. Dis. 77, 1179–1186 (2018).PubMed 

Google Scholar 
Usategui, A. et al. Evidence of telomere attrition and a potential role for DNA damage in systemic sclerosis. Immun. Ageing 19, 7 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vlachogiannis, N. I. et al. Association between DNA damage response, fibrosis and Type I Interferon signature in systemic sclerosis. Front. Immunol. 11, 582401 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paul, S. et al. Centromere defects, chromosome instability, and cGAS-STING activation in systemic sclerosis. Nat. Commun. 13, 7074 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gniadecki, R. et al. Genomic instability in early systemic sclerosis. J. Autoimmun. 131, 102847 (2022).Article 
CAS 
PubMed 

Google Scholar 
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kendall, R. T. & Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharm. 5, 123 (2014).Article 

Google Scholar 
Huang, L., Ma, F., Chapman, A., Lu, S. & Xie, X. S. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu. Rev. Genomics Hum. Genet. 16, 79–102 (2015).Article 
CAS 
PubMed 

Google Scholar 
Dong, X. et al. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat. Methods 14, 491–493 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saini, N. et al. UV-exposure, endogenous DNA damage, and DNA replication errors shape the spectra of genome changes in human skin. PLoS Genet. 17, e1009302 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shinbrot, E. et al. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res. 24, 1740–1750 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lujan, S. A. et al. Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet. 8, e1003016 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164, 538–549 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Senkin, S. MSA: reproducible mutational signature attribution with confidence based on simulations. BMC Bioinforma. 22, 540 (2021).Article 
CAS 

Google Scholar 
Deneuve, S. et al. Molecular landscapes of oral cancers of unknown etiology. medRxiv (2023).Wu, A. J., Perera, A., Kularatnarajah, L., Korsakova, A. & Pitt, J. J. Mutational signature assignment heterogeneity is widespread and can be addressed by ensemble approaches. Brief Bioinform. 24 (2023).Huang, X., Wojtowicz, D. & Przytycka, T. M. Detecting presence of mutational signatures in cancer with confidence. Bioinformatics 34, 330–337 (2018).Article 
CAS 
PubMed 

Google Scholar 
Koh, G., Degasperi, A., Zou, X., Momen, S. & Nik-Zainal, S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat. Rev. Cancer 21, 619–637 (2021).Article 
CAS 
PubMed 

Google Scholar 
Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC Mutagenesis. Cell 176, 1282–1294.e20 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rouhani, F. J. et al. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells. PLoS Genet 12, e1005932 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Kuijk, E. et al. The mutational impact of culturing human pluripotent and adult stem cells. Nat. Commun. 11, 2493 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vijayraghavan, S., Porcher, L., Mieczkowski, P. A. & Saini, N. Acetaldehyde makes a distinct mutation signature in single-stranded DNA. Nucleic Acids Res. 50, 7451–7464 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet 45, 970–976 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pham, P., Bransteitter, R., Petruska, J. & Goodman, M. F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rogozin, I. B. et al. Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers. Sci. Rep. 6, 38133 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Matsuda, T., Kawanishi, M., Yagi, T., Matsui, S. & Takebe, H. Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. Nucleic Acids Res. 26, 1769–1774 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sonohara, Y. et al. Acetaldehyde forms covalent GG intrastrand crosslinks in DNA. Sci. Rep. 9, 660 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Otlu, B. et al. Topography of mutational signatures in human cancer. Cell Rep. 42, 112930 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424–435 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bergstrom, E. N., Kundu, M., Tbeileh, N. & Alexandrov, L. B. Examining clustered somatic mutations with SigProfilerClusters. Bioinformatics 38, 3470–3473 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. APOBEC mutagenesis is a common process in normal human small intestine. Nat. Genet 55, 246–254 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wala, J. A. et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 28, 581–591 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
MacDonald, J. R., Ziman, R., Yuen, R. K., Feuk, L. & Scherer, S. W. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fickelscher, I. et al. The variant inv(2)(p11.2q13) is a genuinely recurrent rearrangement but displays some breakpoint heterogeneity. Am. J. Hum. Genet 81, 847–856 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 10, 25 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Olafsson, S. et al. Somatic Evolution in Non-neoplastic IBD-Affected Colon. Cell 182, 672–684.e11 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rogozin, I. B. et al. DNA polymerase eta mutational signatures are found in a variety of different types of cancer. Cell Cycle 17, 348–355 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nada, S., Kahaleh, B. & Altorok, N. Genome-wide DNA methylation pattern in systemic sclerosis microvascular endothelial cells: Identification of epigenetically affected key genes and pathways. J. Scleroderma Relat. Disord. 7, 71–81 (2022).Article 
PubMed 

Google Scholar 
Folmsbee, S. S., Budinger, G. R. S., Bryce, P. J. & Gottardi, C. J. The cardiomyocyte protein alphaT-catenin contributes to asthma through regulating pulmonary vein inflammation. J. Allergy Clin. Immunol. 138, 123–129.e2 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom. 2 (2022).Burgers, P. M. et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol. Chem. 276, 43487–43490 (2001).Article 
CAS 
PubMed 

Google Scholar 
McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).Article 
CAS 
PubMed 

Google Scholar 
Washington, M. T., Johnson, R. E., Prakash, L. & Prakash, S. Accuracy of lesion bypass by yeast and human DNA polymerase eta. Proc. Natl Acad. Sci. USA 98, 8355–8360 (2001).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-eta. Nature 404, 1011–1013 (2000).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Saini, N. et al. The impact of environmental and endogenous damage on somatic mutation load in human skin fibroblasts. PLoS Genet. 12, e1006385 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Matsuda, T. et al. Error rate and specificity of human and murine DNA polymerase eta. J. Mol. Biol. 312, 335–346 (2001).Article 
CAS 
PubMed 

Google Scholar 
Rogozin, I. B. et al. Mutational signatures and mutable motifs in cancer genomes. Brief. Bioinform. 19, 1085–1101 (2018).CAS 
PubMed 

Google Scholar 
Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kiraly, O., Gong, G., Olipitz, W., Muthupalani, S. & Engelward, B. P. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet. 11, e1004901 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).Article 
CAS 
PubMed 

Google Scholar 
Mao, C. et al. T cell-independent somatic hypermutation in murine B cells with an immature phenotype. Immunity 20, 133–144 (2004).Article 
CAS 
PubMed 

Google Scholar 
William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Schroder, A. E., Greiner, A., Seyfert, C. & Berek, C. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl Acad. Sci. USA 93, 221–225 (1996).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Okazaki, I. M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Casellas, R. et al. Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat. Rev. Immunol. 16, 164–176 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, L. et al. Activation-induced cytidine deaminase expression in colorectal cancer. Int J. Clin. Exp. Pathol. 12, 4119–4124 (2019).PubMed 
PubMed Central 

Google Scholar 
Nonaka, T. et al. Involvement of activation-induced cytidine deaminase in skin cancer development. J. Clin. Invest. 126, 1367–1382 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Sawai, Y. et al. Activation-induced cytidine deaminase contributes to pancreatic tumorigenesis by inducing tumor-related gene mutations. Cancer Res. 75, 3292–3301 (2015).Article 
CAS 
PubMed 

Google Scholar 
Taylor, B. J. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife 2, e00534 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Y. et al. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell 38, 818–828.e5 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hsu, E. et al. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. 63, 783–794 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Renaud, L., da Silveira, W. A., Takamura, N., Hardiman, G. & Feghali-Bostwick, C. Prominence of IL6, IGF, TLR, and bioenergetics pathway perturbation in lung tissues of scleroderma patients with pulmonary fibrosis. Front. Immunol. 11, 383 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pedersen, B. S., Collins, R. L., Talkowski, M. E. & Quinlan, A. R. Indexcov: fast coverage quality control for whole-genome sequencing. Gigascience 6, 1–6 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Koboldt, D. C. Best practices for variant calling in clinical sequencing. Genome Med. 12, 91 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012).Article 
CAS 
PubMed 

Google Scholar 
Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 311–317 (2012).Article 
CAS 
PubMed 

Google Scholar 
Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 10, 33 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, H., Meltzer, P. & Davis, S. RCircos: an R package for Circos 2D track plots. BMC Bioinforma. 14, 244 (2013).Article 

Google Scholar 

Hot Topics

Related Articles