A scoping review on advancements in noninvasive wearable technology for heart failure management

Disease, G. B. D., Injury, I. & Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).Article 

Google Scholar 
Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res. 118, 3272–3287 (2023).Article 
PubMed 

Google Scholar 
Jordan-Rios, A. et al. Reshaping care in the aftermath of the pandemic. Implications for cardiology health systems. Eur. J. Intern. Med. 109, 4–11 (2023).Article 
PubMed 

Google Scholar 
Scholte, N. T. B. et al. Telemonitoring for heart failure: a meta-analysis. Eur. Heart J. 44, 2911–2926 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Sharif, F. et al. Twelve-month follow-up results from the SIRONA 2 clinical trial. ESC Heart Fail 11, 1133–1143 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Clephas, P. R. D. et al. Efficacy of pulmonary artery pressure monitoring in patients with chronic heart failure: a meta-analysis of three randomized controlled trials. Eur. Heart J. 44, 3658–3668 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Koehler, F. & Hindricks, G. Is telemonitoring for heart failure ready after a journey longer than two decades? Eur. Heart J. 44, 2927–2929 (2023).Article 
PubMed 

Google Scholar 
McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).Article 
PubMed 

Google Scholar 
Wearable Computing Devices Market – Growth, Trends, COVID-19 Impact, and Forecasts https://www.researchandmarkets.com/reports/4787502/wearable-computing-devices-market-growth (2021–2026).Jensen, M. T. et al. ESC working group on e-cardiology position paper: use of commercially available wearable technology for heart rate and activity tracking in primary and secondary cardiovascular prevention-in collaboration with the European Heart Rhythm Association, European Association of Preventive Cardiology, Association of Cardiovascular Nursing and Allied Professionals, Patient Forum, and the Digital Health Committee. Eur. Heart J. Digit Health 2, 49–59 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Manninger, M. et al. Role of wearable rhythm recordings in clinical decision making-The wEHRAbles project. Clin. Cardiol. 43, 1032–1039 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ravizza, A. et al. Comprehensive review on current and future regulatory requirements on wearable sensors in preclinical and clinical testing. Front Bioeng. Biotechnol. 7, 313 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Jiang, N., Muck, J. E. & Yetisen, A. K. The regulation of wearable medical devices. Trends Biotechnol. 38, 129–133 (2020).Article 
PubMed 

Google Scholar 
Seva, R. R., Tan, A. L. S., Tejero, L. M. S. & Salvacion, M. L. D. S. Multi-dimensional readiness assessment of medical devices. Theor. Issues Erg. Sci. 24, 189–205 (2023).Article 

Google Scholar 
Aamodt, I. T. et al. Self-care monitoring of heart failure symptoms and lung impedance at home following hospital discharge: longitudinal study. J. Med. Internet Res. 22, e15445 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Alosco, M. L. et al. Decreased physical activity predicts cognitive dysfunction and reduced cerebral blood flow in heart failure. J. Neurol. Sci. 339, 169–175 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Alosco, M. L. et al. Decreases in daily physical activity predict acute decline in attention and executive function in heart failure. J. Card. Fail. 21, 339–346 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Alosco, M. L. et al. Depression is associated with reduced physical activity in persons with heart failure. Health Psychol. 31, 754–762 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Alvarez-Garcia, J. et al. Remote dielectric sensing before and after discharge in patients with ADHF: the ReDS-SAFE HF trial. JACC Heart Fail 12, 695–706 (2024).Article 
PubMed 

Google Scholar 
Amir, O. et al. Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart failure re-hospitalizations. Int. J. Cardiol. 240, 279–284 (2017).Article 
PubMed 

Google Scholar 
Baril, J. F. et al. Use of free-living step count monitoring for heart failure functional classification: validation study. JMIR Cardio 3, e12122 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bensimhon, D. et al. The use of the Reds noninvasive lung fluid monitoring system to assess readiness for discharge in patients hospitalized with acute heart failure: a pilot study. Heart Lung 50, 59–64 (2021).Article 
PubMed 

Google Scholar 
Blockhaus, C. et al. Telemonitoring potential of wearable cardioverter-defibrillators during the follow-up of patients with heart failure. J. Cardiovasc. Dev. Dis. 9, 175 (2022).PubMed 
PubMed Central 

Google Scholar 
Blomqvist, A., Bäck, M., Klompstra, L., Strömberg, A. & Jaarsma, T. Utility of single-item questions to assess physical inactivity in patients with chronic heart failure. ESC Heart Fail 7, 1467–1476 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Braun, T. et al. Association between heart failure severity and mobility in geriatric patients: an in-clinic study with wearable sensors. J. Geriatr. Cardiol. 19, 660–674 (2022).PubMed 
PubMed Central 

Google Scholar 
Burch, A. E. et al. Wearable cardioverter defibrillator-guided 6-min walk test performed at home is accurate and reliable: RESULTS OF THE TRENDS STUDY. J. Cardiopulm. Rehabil. Prev. 40, E14–E17 (2020).Article 
PubMed 

Google Scholar 
Burkhoff, D., Bailey, G. & Gimbel, J. R. Characterization of cardiac acoustic biomarkers in patients with heart failure. Ann. Noninvasive Electrocardiol. 25, e12717 (2020).Article 
PubMed 

Google Scholar 
Butler, J. et al. Accelerometer vs. other activity measures in heart failure with preserved ejection fraction: the VITALITY-HFpEF trial. ESC Heart Fail 11, 293–298 (2024).Article 
PubMed 

Google Scholar 
Curtain, J. P. et al. Measuring congestion with a non-invasive monitoring device in heart failure and haemodialysis: CONGEST-HF. Eur. J. Heart Fail 26, 1383–1392 (2024).Article 
PubMed 

Google Scholar 
da Silva, V. Z. et al. Association between physical activity measurements and key parameters of cardiopulmonary exercise testing in patients with heart failure. J. Card. Fail 19, 635–640 (2013).Article 
PubMed 

Google Scholar 
Dagan, M. et al. Advanced hemodynamic monitoring allows recognition of early response patterns to diuresis in congestive heart failure patients. J. Clin. Med 12, 45 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Darling, C. E. et al. Bioimpedance-based heart failure deterioration prediction using a prototype fluid accumulation vest-mobile phone dyad: an observational study. JMIR Cardio 1, e1 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Deka, P., Pozehl, B., Norman, J. F. & Khazanchi, D. Feasibility of using the Fitbit(®) Charge HR in validating self-reported exercise diaries in a community setting in patients with heart failure. Eur. J. Cardiovasc Nurs. 17, 605–611 (2018).Article 
PubMed 

Google Scholar 
Di Rienzo, M., Rizzo, G., Işılay, Z. M. & Lombardi, P. SeisMote: a multi-sensor wireless platform for cardiovascular monitoring in laboratory, daily life, and telemedicine. Sensors 20, 680 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Dibben, G. O. et al. Physical activity assessment by accelerometry in people with heart failure. BMC Sports Sci. Med Rehabil. 12, 47 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Dibben, G. O. et al. Home-based cardiac rehabilitation and physical activity in people with heart failure: a secondary analysis of the REACH-HF randomised controlled trials. BMJ Open 13, e063284 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Dontje, M. L. et al. Daily physical activity in stable heart failure patients. J. Cardiovasc. Nurs. 29, 218–226 (2014).Article 
PubMed 

Google Scholar 
Dorsch, M. P., Farris, K. B., Rowell, B. E., Hummel, S. L. & Koelling, T. M. The effects of the ManageHF4Life mobile app on patients with chronic heart failure: randomized controlled trial. JMIR Mhealth Uhealth 9, e26185 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Edwards, M. K. & Loprinzi, P. D. Sedentary behavior & health-related quality of life among congestive heart failure patients. Int. J. Cardiol. 220, 520–523 (2016).Article 
PubMed 

Google Scholar 
Erath, J. W. et al. Influence of decompensated heart failure on cardiac acoustic biomarkers: impact on early readmissions. ESC Heart Fail 7, 4198–4205 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Evangelista, L. S. et al. Validity of pedometers for measuring exercise adherence in heart failure patients. J. Card. Fail 11, 366–371 (2005).Article 
PubMed 

Google Scholar 
Floegel, T. A., Allen, K. D. & Buman, M. P. A pilot study examining activity monitor use in older adults with heart failure during and after hospitalization. Geriatr. Nurs. 40, 185–189 (2019).Article 
PubMed 

Google Scholar 
Floegel, T. A. et al. Association of posture and ambulation with function 30 days after hospital discharge in older adults with heart failure. J. Card. Fail 24, 126–130 (2018).Article 
PubMed 

Google Scholar 
Fulcher, K. K. et al. Greater physical activity is associated with better cognitive function in heart failure. Health Psychol. 33, 1337–1343 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Garcia, R. et al. Dynamic changes in nocturnal heart rate predict short-term cardiovascular events in patients using the wearable cardioverter-defibrillator: from the WEARIT-France cohort study. Europace 25, euad062 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Gardner, C. L. et al. Electronic physiologic and subjective data acquisition in home-dwelling heart failure patients: an assessment of patient use and perception of usability. Int. J. Med Inform. 93, 42–48 (2016).Article 
PubMed 

Google Scholar 
German, C. A. et al. Relationships between objectively measured physical activity, exercise capacity, and quality of life in older patients with obese heart failure and preserved ejection fraction. J. Card. Fail 27, 635–641 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Güder, G. et al. Establishing a cardiac training group for patients with heart failure: the “HIP-in-Würzburg” study. Clin. Res. Cardiol. 111, 406–415 (2022).Article 
PubMed 

Google Scholar 
Guo, X. et al. A hospital-community-family-based telehealth program for patients with chronic heart failure: single-arm, prospective feasibility study. JMIR Mhealth Uhealth 7, e13229 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Herkert, C., Kraal, J. J., van Loon, E. M. A., van Hooff, M. & Kemps, H. M. C. Usefulness of modern activity trackers for monitoring exercise behavior in chronic cardiac patients: validation study. JMIR Mhealth Uhealth 7, e15045 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Hillmann, H. A. K. et al. Feasibility and first results of heart failure monitoring using the wearable cardioverter-defibrillator in newly diagnosed heart failure with reduced ejection fraction. Sensors 21, 7798 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Holber, J. P. et al. The relationship between objectively measured step count, clinical characteristics, and quality of life among depressed patients recently hospitalized with systolic heart failure. Psychosom. Med. 84, 231–236 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Howie-Esquivel, J. & Zaharias, E. Using novel technology to determine mobility among hospitalized heart failure patients: a pilot study. Cardiol. Res. 4, 15–25 (2013).PubMed 
PubMed Central 

Google Scholar 
Iliodromitis, K. et al. Assessing physical activity with the wearable cardioverter defibrillator in patients with newly diagnosed heart failure. Front Cardiovasc. Med. 10, 1176710 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Inan, O. T. et al. Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. Circ. Heart Fail 11, e004313 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Iqbal, S. M., Leavitt, M. A., Pedilus, G., Mahgoub, I. & Asghar, W. A wearable telehealth system for the monitoring of parameters related to heart failure. Heliyon 10, e26841 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Development of a wearable belt with integrated sensors for measuring multiple physiological parameters related to heart failure. Sci. Rep. 12, 20264 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Izawa, K. P. et al. Usefulness of step counts to predict mortality in Japanese patients with heart failure. Am. J. Cardiol. 111, 1767–1771 (2013).Article 
PubMed 

Google Scholar 
Izawa, K. P. et al. Association between mental health and physical activity in patients with chronic heart failure. Disabil. Rehabil. 36, 250–254 (2014).Article 
PubMed 

Google Scholar 
Jehn, M. et al. Tele-accelerometry as a novel technique for assessing functional status in patients with heart failure: feasibility, reliability and patient safety. Int. J. Cardiol. 168, 4723–4728 (2013).Article 
PubMed 

Google Scholar 
Jehn, M. et al. Accelerometer-based quantification of 6-minute walk test performance in patients with chronic heart failure: applicability in telemedicine. J. Card. Fail 15, 334–340 (2009).Article 
PubMed 

Google Scholar 
Jungbauer, C. G., Maier, L. S., Emoto, K., Zirille, F. M. & Mirro, M. J. Achieving guideline-directed heart rate controlearly posthospitalization. Am. J. Cardiol. 123, 1096–1100 (2019).Article 
PubMed 

Google Scholar 
Kaneko, T. et al. Relationship between cardiac acoustic biomarkers and pulmonary artery pressure in patients with heart failure. J. Clin. Med. 11, 6373 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Kikuchi, A. et al. Feasibility of home-based cardiac rehabilitation using an integrated telerehabilitation platform in elderly patients with heart failure: a pilot study. J. Cardiol. 78, 66–71 (2021).Article 
PubMed 

Google Scholar 
Klompstra, L. et al. Objectively measured physical activity in patients with heart failure: a sub-analysis from the HF-Wii study. Eur. J. Cardiovasc. Nurs. 21, 499–508 (2022).Article 
PubMed 

Google Scholar 
Klompstra, L., Jaarsma, T. & Strömberg, A. Exergaming to increase the exercise capacity and daily physical activity in heart failure patients: a pilot study. BMC Geriatr. 14, 119 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Koivisto, T. et al. Mechanocardiography-based measurement system indicating changes in heart failure patients during hospital admission and discharge. Sensors 22, 9781 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lala, A. et al. Early use of remote dielectric sensing after hospitalization to reduce heart failure readmissions. ESC Heart Fail 8, 1047–1054 (2021).Article 
PubMed 

Google Scholar 
Li, P. et al. Objective assessment of daytime napping and incident heart failure in 1140 community-dwelling older adults: a prospective, observational cohort study. J. Am. Heart Assoc. 10, e019037 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, X. C. et al. Evaluation of left ventricular systolic function using synchronized analysis of heart sounds and the electrocardiogram. Heart Rhythm 17, 876–880 (2020).Article 
PubMed 

Google Scholar 
Lin, H. et al. Clinical and demographic correlates of accelerometer-measured physical activity in participants enrolled in the OPTIMISE HFpEF study. Eur. J. Cardiovasc. Nurs. 21, 67–75 (2022).Article 
PubMed 

Google Scholar 
Lin, W. Y. et al. Realization and technology acceptance test of a wearable cardiac health monitoring and early warning system with multi-channel MCGs and ECG. Sensors 18, 3538 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
McCarthy, M. M., Dickson, V. V., Katz, S. D. & Chyun, D. A. An exercise counseling intervention in minority adults with heart failure. Rehabil. Nurs. 42, 146–156 (2017).Article 
PubMed 

Google Scholar 
Melczer, C., Melczer, L., Goják, I., Oláh, A. & Ács, P. A comparative analysis between external accelerometer and internal accelerometer’s physical activity data from implanted resynchronization devices in patients with heart failure. Eur. J. Integr. Med 8, 18–22 (2016).Article 

Google Scholar 
Melin, M., Hagerman, I., Gonon, A., Gustafsson, T. & Rullman, E. Variability in physical activity assessed with accelerometer is an independent predictor of mortality in CHF patients. PLoS One 11, e0153036 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Miyahara, S. et al. Postdischarge light-intensity physical activity predicts rehospitalization of older Japanese patients with heart failure. J. Cardiopulm. Rehabil. Prev. 38, 182–186 (2018).Article 
PubMed 

Google Scholar 
Mlakar, M. et al. Mining telemonitored physiological data and patient-reported outcomes of congestive heart failure patients. PLoS One 13, e0190323 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Nagatomi, Y. et al. Home-based cardiac rehabilitation using information and communication technology for heart failure patients with frailty. ESC Heart Fail 9, 2407–2418 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Nelson, M. B. et al. Physical activity and relationship to physical function, quality of life, and cognitive function in older patients with acute decompensated heart failure. Am. Heart J. 256, 85–94 (2023).Article 
PubMed 

Google Scholar 
O’Donnell, J. et al. Self-reported and objectively measured physical activity in people with and without chronic heart failure: UK Biobank analysis. Open Heart 7, e001099 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Okwose, N. C. et al. Acceptability, feasibility and preliminary evaluation of a novel, personalised, home-based physical activity intervention for chronic heart failure (Active-at-Home-HF): a pilot study. Sports Med. Open 5, 45 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Omar, M. et al. Hemodynamic determinants of activity measured by accelerometer in patients with stable heart failure. JACC Heart Fail. 9, 824–835 (2021).Article 
PubMed 

Google Scholar 
Pan, X. et al. Deep cross-modal feature learning applied to predict acutely decompensated heart failure using in-home collected electrocardiography and transthoracic bioimpedance. Artif. Intell. Med 140, 102548 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Polcz, M. et al. Comparison of clinical symptoms and bioimpedance to pulmonary capillary wedge pressure in heart failure. Am. Heart J. 15, 100133 (2022).
Google Scholar 
Pozehl, B. J. et al. Accelerometer-measured daily activity levels and related factors in patients with heart failure. J. Cardiovasc Nurs. 33, 329–335 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Prescher, S. et al. Prognostic value of serial six-minute walk tests using tele-accelerometry in patients with chronic heart failure: A pre-specified sub-study of the TIM-HF-Trial. Eur. J. Prev. Cardiol. 23, 21–26 (2016).Article 
PubMed 

Google Scholar 
Radhakrishnan, K. et al. Usability testing of a sensor-controlled digital game to engage older adults with heart failure in physical activity and weight monitoring. Appl. Clin. Inf. 11, 873–881 (2020).Article 

Google Scholar 
Röger, S. et al. Therapy optimization in patients with heart failure: the role of the wearable cardioverter-defibrillator in a real-world setting. BMC Cardiovasc. Disord. 18, 52 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Rullman, E. et al. Circulatory factors associated with function and prognosis in patients with severe heart failure. Clin. Res. Cardiol. 109, 655–672 (2020).Article 
PubMed 

Google Scholar 
Sanchez-Perez, J. A. et al. A wearable multimodal sensing system for tracking changes in pulmonary fluid status, lung sounds, and respiratory markers. Sensors (Basel) 22, 1130 (2022).Article 
PubMed 

Google Scholar 
Savoldelli, A., Vitali, A., Remuzzi, A. & Giudici, V. Improving the user experience of televisits and telemonitoring for heart failure patients in less than 6 months: a methodological approach. Int. J. Med Inf. 161, 104717 (2022).Article 

Google Scholar 
Schmidt, C. et al. Comparison of questionnaire and accelerometer-based assessments of physical activity in patients with heart failure with preserved ejection fraction: clinical and prognostic implications. Scand. Cardiovasc. J. 54, 77–83 (2020).Article 
PubMed 

Google Scholar 
Schwendinger, F., Wagner, J., Infanger, D., Schmidt-Trucksäss, A. & Knaier, R. Methodological aspects for accelerometer-based assessment of physical activity in heart failure and health. BMC Med. Res. Methodol. 21, 251 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Shandhi, M. M. H. et al. Wearable patch-based estimation of oxygen uptake and assessment of clinical status during cardiopulmonary exercise testing in patients with heart failure. J. Card. Fail 26, 948–958 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Shen, H. et al. Impaired chronotropic response to physical activities in heart failure patients. BMC Cardiovasc. Disord. 17, 136 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Shiraishi, Y. et al. Assessment of physical activity using waist-worn accelerometers in hospitalized heart failure patients and its relationship with Kansas City cardiomyopathy questionnaire. J. Clin. Med 10, 4103 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Shoemaker, M. J., Curtis, A. B., Vangsnes, E. & Dickinson, M. G. Clinically meaningful change estimates for the six-minute walk test and daily activity in individuals with chronic heart failure. Cardiopulm Phys. Ther. J. 24, 21–29 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Smeets, C. J. P. et al. The added value of in-hospital tracking of the efficacy of decongestion therapy and prognostic value of a wearable thoracic impedance sensor in acutely decompensated heart failure with volume overload: prospective cohort study. JMIR Cardio 4, e12141 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Snipelisky, D. et al. Accelerometer-measured daily activity in heart failure with preserved ejection fraction: clinical correlates and association with standard heart failure severity indices. Circ. Heart Fail 10, e003878 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Sohn, A. et al. Integrating remote monitoring into heart failure patients’ care regimen: a pilot study. PLoS One 15, e0242210 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Solar, H. et al. A non invasive, wearable sensor platform for multi-parametric remote monitoring in CHF patients. Health Technol. 3, 99–109 (2013).Article 

Google Scholar 
Stehlik, J. et al. Continuous wearable monitoring analytics predict heart failure hospitalization: the LINK-HF multicenter study. Circ. Heart Fail. 13, e006513 (2020).Article 
PubMed 

Google Scholar 
Ueno, Y., Imamura, T., Narang, N. & Kinugawa, K. Chronotype of lung fluid levels in patients with chronic heart failure. J. Clin. Med. 11, 2714 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
van den Berg-Emons, H. R., Bussmann, J. H., Balk, A., Keijzer-Oster, D. & Stam, H. Level of activities associated with mobility during everyday life in patients with chronic congestive heart failure as measured with an “activity monitor. Phys. Ther. 81, 1502–1511 (2001).Article 
PubMed 

Google Scholar 
van den Berg-Emons, R. J., Bussmann, J. B., Balk, A. H. & Stam, H. J. Factors associated with the level of movement-related everyday activity and quality of life in people with chronic heart failure. Phys. Ther. 85, 1340–1348 (2005).Article 
PubMed 

Google Scholar 
Vetrovsky, T. et al. The detrimental effect of COVID-19 nationwide quarantine on accelerometer-assessed physical activity of heart failure patients. ESC Heart Fail 7, 2093–2097 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Vetrovsky, T. et al. Lifestyle walking intervention for patients with heart failure with reduced ejection fraction: the WATCHFUL Trial. Circulation 149, 177–188 (2024).Article 
PubMed 

Google Scholar 
Vetrovsky, T. et al. Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure. PLoS One 14, e0222569 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Waring, T., Gross, K., Soucier, R. & ZuWallack, R. Measured physical activity and 30-day rehospitalization in heart failure patients. J. Cardiopulm. Rehabil. Prev. 37, 124–129 (2017).Article 
PubMed 

Google Scholar 
Witham, M. D., Argo, I. S., Johnston, D. W., Struthers, A. D. & McMurdo, M. E. Predictors of exercise capacity and everyday activity in older heart failure patients. Eur. J. Heart Fail 8, 203–207 (2006).Article 
PubMed 

Google Scholar 
Wong, C. K. et al. Daily ambulatory remote monitoring system for drug escalation in chronic heart failure with reduced ejection fraction: pilot phase of DAVID-HF study. Eur. Heart J. Digit Health 3, 284–295 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yates, B. C., Pozehl, B., Kupzyk, K., Epstein, C. M. & Deka, P. Are heart failure and coronary artery bypass surgery patients meeting physical activity guidelines? Rehabil. Nurs. 42, 119–124 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Young, L., Hertzog, M. & Barnason, S. Feasibility of using accelerometer measurements to assess habitual physical activity in rural heart failure patients. Geriatrics 2, 23 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Vestergaard, A. S., Hansen, L., Sorensen, S. S., Jensen, M. B. & Ehlers, L. H. Is telehealthcare for heart failure patients cost-effective? An economic evaluation alongside the Danish TeleCare North heart failure trial. BMJ Open 10, e031670 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lim, F. Y. et al. Correlation of the New York Heart Association classification and the cardiopulmonary exercise test: a systematic review. Int J. Cardiol. 263, 88–93 (2018).Article 
PubMed 

Google Scholar 
Maric, B., Kaan, A., Ignaszewski, A. & Lear, S. A. A systematic review of telemonitoring technologies in heart failure. Eur. J. Heart Fail 11, 506–517 (2009).Article 
PubMed 

Google Scholar 
Almeida Junior, G. L., Xavier, S. S., Garcia, M. I. & Clausell, N. Hemodynamic assessment in heart failure: role of physical examination and noninvasive methods. Arq. Bras. Cardiol. 98, e15–e21 (2012).Anderson, K. M. et al. Perceived symptoms as the primary indicators for 30-day heart failure readmission. PLoS One 17, e0267820 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Scholte, N. T. B. et al. Photoplethysmography and intracardiac pressures: early insights from a pilot study. Eur. Heart J. Digit Health 5, 379–383 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
van Smeden, M. et al. Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease. Eur. Heart J. 43, 2921–2930 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Gill, S. K. et al. Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare. Eur. Heart J. 44, 713–725 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kumar, S. et al. Wearables in cardiovascular disease. J. Cardiovasc Transl. Res 16, 557–568 (2023).Article 
PubMed 

Google Scholar 
General Wellness: Policy for Low Risk Devices Guidance for Industry and Food and Drug Administration Staff Department: U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health. (ed U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health) FDA-2014-N-1039 (2019) https://www.fda.gov/media/90652/download.Bianchini, E. & Mayer, C. C. Medical device regulation: should we care about it? Artery Res. 28, 55–60 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Bayoumy, K. et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat. Rev. Cardiol. 18, 581–599 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Musa, S. M. et al. Paucity of health data in Africa: an obstacle to digital health implementation and evidence-based practice. Public Health Rev. 44, 1605821 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
DeVore, A. D., Fudim, M. & Lund, L. H. Novel trial designs in heart failure: using digital health tools to increase pragmatism. Curr. Heart Fail Rep. 21, 5–10 (2024).Article 
PubMed 

Google Scholar 
Inan, O. T. et al. Digitizing clinical trials. NPJ Digit Med. 3, 101 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, E. W. J. & Viswanath, K. Big data in context: addressing the twin perils of data absenteeism and chauvinism in the context of health disparities research. J. Med Internet Res. 22, e16377 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Holmes Fee, C. et al. Strategies and solutions to address Digital Determinants of Health (DDOH) across underinvested communities. PLOS Digit Health 2, e0000314 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Bruining, N. et al. Acquisition and analysis of cardiovascular signals on smartphones: potential, pitfalls and perspectives: by the Task Force of the e-Cardiology Working Group of European Society of Cardiology. Eur. J. Prev. Cardiol. 21, 4–13 (2014).Article 
PubMed 

Google Scholar 
Haynes, N. et al. “Can you see my screen?” Addressing racial and ethnic disparities in telehealth. Curr. Cardiovasc Risk Rep. 15, 23 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
van Kessel, R. et al. Digital health reimbursement strategies of 8 European countries and Israel: scoping review and policy mapping. JMIR Mhealth Uhealth 11, e49003 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Naseri Jahfari, A., Tax, D., Reinders, M. & van der Bilt, I. Machine learning for cardiovascular outcomes from wearable data: systematic review from a technology readiness level point of view. JMIR Med Inf. 10, e29434 (2022).Article 

Google Scholar 
Cohen, I. G. & Mello, M. M. Big data, big tech, and protecting patient privacy. JAMA 322, 1141–1142 (2019).Article 
PubMed 

Google Scholar 
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
AccessGUDID, https://accessgudid.nlm.nih.gov/devices/search.Devices/SPPs – EUDAMED https://ec.europa.eu/tools/eudamed/#/screen/search-device.

Hot Topics

Related Articles