Prediction of adverse drug reactions using demographic and non-clinical drug characteristics in FAERS data

Bhuiyan, P. & Rege, N. ICH Harmonised Tripartite Guideline: guideline for good clinical practice. (2001).Kohn, L. T., Corrigan, J. M. & Donaldson, M. S. (National Academy, 2000).Poudel, D. R., Acharya, P., Ghimire, S., Dhital, R. & Bharati, R. Burden of hospitalizations related to adverse drug events in the USA: a retrospective analysis from large inpatient database. Pharmacoepidemiol. Drug Saf. 26, 635–641 (2017).Article 
CAS 
PubMed 

Google Scholar 
Karimi, S., Wang, C., Metke-Jimenez, A., Gaire, R. & Paris, C. Text and data mining techniques in adverse drug reaction detection. ACM Comput. Surv. (CSUR) 47, 1–39 (2015).Article 

Google Scholar 
Pierce, C. E. et al. Evaluation of Facebook and Twitter monitoring to detect safety signals for medical products: an analysis of recent FDA safety alerts. Drug Saf. 40, 317–331 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Yom-Tov, E. & Gabrilovich, E. Postmarket drug surveillance without trial costs: discovery of adverse drug reactions through large-scale analysis of web search queries. J. Med. Internet. Res. 15, e124 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Nguyen, D. A., Nguyen, C. H. & Mamitsuka, H. A survey on adverse drug reaction studies: data, tasks and machine learning methods. Brief. Bioinform. 22, 164–177 (2021).Article 
PubMed 

Google Scholar 
Dey, S., Luo, H., Fokoue, A., Hu, J. & Zhang, P. Predicting adverse drug reactions through interpretable deep learning framework. BMC Bioinform. 19, 1–13 (2018).Article 

Google Scholar 
Ding, Y., Tang, J. & Guo, F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing 325, 211–224 (2019).Article 

Google Scholar 
Jamal, S., Goyal, S., Shanker, A. & Grover, A. Predicting neurological adverse drug reactions based on biological, chemical and phenotypic properties of drugs using machine learning models. Sci. Rep. 7, 1–12 (2017).Article 
CAS 

Google Scholar 
Liu, M. et al. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J. Am. Med. Inform. Assoc. 19, e28–e35 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, C. S. et al. Detecting potential adverse drug reactions using a deep neural network model. J. Med. Internet. Res. 21, e11016 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, W., Liu, F., Luo, L. & Zhang, J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinform. 16, 1–11 (2015).Article 

Google Scholar 
Finkelstein, J., Chen, Q., Adams, H. & Friedman, C. Automated summarization of publications associated with adverse drug reactions from PubMed. AMIA Summits on Translational Science Proceedings 68 (2016). (2016).Lee, K. et al. In Proc. 26th international conference on world wide web. 705–714.Munkhdalai, T., Liu, F. & Yu, H. Clinical relation extraction toward drug safety surveillance using electronic health record narratives: classical learning versus deep learning. JMIR Public. Health Surveillance 4, e29 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Yahya, A. A., Asiri, Y. & Alyami, I. In 2020 21st International Arab Conference on Information Technology (ACIT). 1–6 (IEEE).Muñoz, E., Nováček, V. & Vandenbussche, P. Y. In AMIA Annual Symposium Proceedings. 924 (American Medical Informatics Association).Rahmani, H., Weiss, G., Méndez-Lucio, O., Bender, A. & ARWAR. A network approach for predicting adverse drug reactions. Comput. Biol. Med. 68, 101–108 (2016).Article 
CAS 
PubMed 

Google Scholar 
Alberti, P. & Cavaletti, G. Management of side effects in the personalized medicine era: chemotherapy-induced peripheral neuropathy. Pharmacogenomics Drug Discovery Dev., 301–322 (2014).Lee, H., Song, S., Oh, Y. K., Kang, W. & Kim, E. Is gender still a predisposing factor in contrast-media associated adverse drug reactions? A systematic review and meta-analysis of randomized trials and observational studies. Eur. J. Radiol. 89, 81–89 (2017).Article 
PubMed 

Google Scholar 
Watson, S., Caster, O., Rochon, P. A. & den Ruijter, H. Reported adverse drug reactions in women and men: aggregated evidence from globally collected individual case reports during half a century. EClinicalMedicine 17, 100188 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Zekarias, A., Watson, S., Vidlin, S. H. & Grundmark, B. Sex differences in reported adverse drug reactions to COVID-19 drugs in a global database of individual case safety reports. Drug Saf. 43, 1309–1314 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hunt, C. M., Yuen, N. A., Stirnadel-Farrant, H. A. & Suzuki, A. Age-related differences in reporting of drug-associated liver injury: data-mining of WHO Safety Report Database. Regul. Toxicol. Pharmacol. 70, 519–526 (2014).Article 
CAS 
PubMed 

Google Scholar 
Alomar, M. J. Factors affecting the development of adverse drug reactions. Saudi Pharm. J. 22, 83–94 (2014).Article 
PubMed 

Google Scholar 
Wu, L. et al. Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA. BMC Bioinform. 20, 129–139 (2019).Article 

Google Scholar 
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

Google Scholar 
Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006).Article 
ADS 

Google Scholar 
Harpaz, R. et al. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37, 777–790 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kim, S. et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49, D1388–D1395 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, X. et al. Network characteristic analysis of ADR-related proteins and identification of ADR-ADR associations. Sci. Rep. 3, 1–7 (2013).CAS 

Google Scholar 
Ji, Z. L. et al. Drug adverse reaction target database (DART). Drug Saf. 26, 685–690 (2003).Article 
CAS 
PubMed 

Google Scholar 
Whitebread, S., Hamon, J., Bojanic, D. & Urban, L. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discovery Today 10, 1421–1433 (2005).Article 
CAS 
PubMed 

Google Scholar 
Taylor, J. B. Comprehensive Medicinal Chemistry II (Elsevier, 2007).Knox, C. et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 39, D1035–D1041 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, C. X. et al. Herb-drug interactions involving drug metabolizing enzymes and transporters. Curr. Drug Metab. 12, 835–849 (2011).Article 
CAS 
PubMed 

Google Scholar 
Lutz, H., Hu, S., Dinh, P. U. & Cheng, K. Cells and cell derivatives as drug carriers for targeted delivery. Med. Drug Discovery 3, 100014 (2019).Article 

Google Scholar 
Dong, J. et al. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation. J. Cheminform. 7, 1–10 (2015).Article 

Google Scholar 
Kim, S. et al. PubChem structure–activity relationship (SAR) clusters. J. Cheminform. 7, 1–22 (2015).Article 
ADS 

Google Scholar 
Yu, Y. et al. Detecting and Filtering Immune-Related Adverse Events Signal Based on Text Mining and Observational Health Data Sciences and Informatics Common Data Model: Framework Development Study. JMIR Med. Inf. 8, e17353 (2020).Banda, J. M. et al. A curated and standardized adverse drug event resource to accelerate drug safety research. Sci. Data 3, 1–11 (2016).Article 
ADS 

Google Scholar 
Dasu, T. & Johnson, T. Exploratory data Mining and data Cleaning. Vol. 479 (Wiley, 2003).Khaleel, M. A., Khan, A. H., Ghadzi, S. M. S., Adnan, A. S. & Abdallah, Q. M. In Healthcare 420 (MDPI).Cepeda, M. S. et al. Side effects of opioids during short-term administration: Effect of age, gender, and race. Clin. Pharmacol. Ther. 74, 102–112 (2003).Article 
CAS 
PubMed 

Google Scholar 
Rich, M. W., McSherry, F., Williford, W. O., Yusuf, S. & Group, D. I. Effect of age on mortality, hospitalizations and response to digoxin in patients with heart failure: the DIG study. J. Am. Coll. Cardiol. 38, 806–813 (2001).Article 
CAS 
PubMed 

Google Scholar 
Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016).Article 
CAS 
PubMed 

Google Scholar 
MacCallum, R. C., Widaman, K. F., Zhang, S. & Hong, S. Sample size in factor analysis. Psychol. Methods 4, 84 (1999).Article 

Google Scholar 
Hu, B., Wang, H., Wang, L. & Yuan, W. Adverse drug reaction predictions using stacking deep heterogeneous information network embedding approach. Molecules 23, 3193 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Fattinger, K. et al. Epidemiology of drug exposure and adverse drug reactions in two Swiss departments of internal medicine. Br. J. Clin. Pharmacol. 49, 158–167 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zopf, Y. et al. Women encounter ADRs more often than do men. Eur. J. Clin. Pharmacol. 64, 999–1004 (2008).Article 
CAS 
PubMed 

Google Scholar 
Rodenburg, E. M., Stricker, B. H. C. & Visser, L. E. Sex-related differences in hospital admissions attributed to adverse drug reactions in the Netherlands. Br. J. Clin. Pharmacol. 71, 95–104 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Nicolson, T. J., Mellor, H. R. & Roberts, R. R. gender differences in drug toxicity. Trends Pharmacol. Sci. 31, 108–114 (2010).Article 
CAS 
PubMed 

Google Scholar 
Yu, Y. M. et al. Patterns of adverse drug reactions in different age groups: analysis of spontaneous reports by community pharmacists. PloS One 10, e0132916 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
de Araújo Lobo, M. G. A., Pinheiro, S. M. B., Castro, J. G. D., Momenté, V. G. & Pranchevicius, M. C. S. Adverse drug reaction monitoring: support for pharmacovigilance at a tertiary care hospital in Northern Brazil. BMC Pharmacol. Toxicol. 14, 1–7 (2013).
Google Scholar 
Arnott, J. A., Kumar, R. & Planey, S. L. Lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet. 1, 31–36 (2013).
Google Scholar 
Arnott, J. A. & Planey, S. L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 7, 863–875 (2012).Article 
CAS 
PubMed 

Google Scholar 
Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discovery 6, 881–890 (2007).Article 
CAS 
PubMed 

Google Scholar 
Chen, M., Borlak, J. & Tong, W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58, 388–396 (2013).Article 
CAS 
PubMed 

Google Scholar 
Valko, K., Chiarparin, E., Nunhuck, S. & Montanari, D. In vitro measurement of drug efficiency index to aid early lead optimization. J. Pharm. Sci. 101, 4155–4169 (2012).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J., Qian, J., Tong, J., Zhang, D. & Hu, C. Toxic effects of cephalosporins with specific functional groups as indicated by zebrafish embryo toxicity testing. Chem. Res. Toxicol. 26, 1168–1181 (2013).Article 
CAS 
PubMed 

Google Scholar 
Clark, D. E. What has polar surface area ever done for drug discovery? Future Med. Chem. 3, 469–484 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Prasanna, S. & Doerksen, R. Topological polar surface area: a useful descriptor in 2D-QSAR. Curr. Med. Chem. 16, 21–41 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hughes, J. D. et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 18, 4872–4875 (2008).Article 
CAS 
PubMed 

Google Scholar 
Chagas, C. M., Moss, S. & Alisaraie, L. Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski’s rule of five. Int. J. Pharm. 549, 133–149 (2018).Article 
CAS 
PubMed 

Google Scholar 
Leach, A. R. & Hann, M. M. Molecular complexity and fragment-based drug discovery: ten years on. Curr. Opin. Chem. Biol. 15, 489–496 (2011).Article 
CAS 
PubMed 

Google Scholar 
Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 51, 817–834 (2008).Article 
CAS 
PubMed 

Google Scholar 
Sharma, A., Kumar, N., Kuppermann, B. D., Bandello, F. & Loewenstein, A. Biotherapeutics and immunogenicity: ophthalmic perspective. Eye 33, 1359–1361 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).Article 
CAS 
PubMed 

Google Scholar 
Mealey, K. L. Adverse drug reactions in veterinary patients associated with drug transporters. Veterinary Clin. Small Anim. Pract. 43, 1067–1078 (2013).Article 

Google Scholar 
Takenaka, S., Itoh, T. & Fujiwara, R. Expression pattern of human ATP-binding cassette transporters in skin. Pharmacol. Res. Perspect. 1 (2013).Yamasaki, K., Chuang, V. T. G., Maruyama, T. & Otagiri, M. Albumin–drug interaction and its clinical implication. Biochim. et Biophys. Acta (BBA)-General Subj. 1830, 5435–5443 (2013).Article 
CAS 

Google Scholar 
Lavan, A. H. & Gallagher, P. Predicting risk of adverse drug reactions in older adults. Therapeutic Adv. drug Saf. 7, 11–22 (2016).Article 

Google Scholar 

Hot Topics

Related Articles