Enhanced climate change resilience on wheat anther morphology using optimized deep learning techniques

Kumar, S. et al. Molecular approaches for designing heat tolerant wheat. J. Plant. Biochem. Biotechnol. 22, 359–371 (2013).Article 

Google Scholar 
Kizilgeci, F. et al. Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability. 13, 3725 (2021).Article 
CAS 

Google Scholar 
Riaz, M. W. et al. Effects of heat stress on growth, physiology of plants, yield and grain quality of different spring wheat (triticum aestivum l.) genotypes. Sustainability. 13, 2972 (2021).Article 
CAS 

Google Scholar 
Erenstein, O. et al. Global trends in wheat production, consumption and trade. In Wheat Improvement: Food Security in a Changing Climate, 47–66 (Springer International Publishing Cham, (2022).Chapter 

Google Scholar 
Hassan, G. & Gul, R. Diallel analysis of the inheritance pattern of agronomic traits of bread wheat. Pak J. Bot. 38, 1169–1175 (2006).
Google Scholar 
Khalid, A., Hameed, A. & Tahir, M. Wheat quality: a review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front. Nutr. 10, 1053196 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Lohani, N., Singh, M. B. & Bhalla, P. L. High temperature susceptibility of sexual reproduction in crop plants. J. Exp. Bot. 71, 555–568. https://doi.org/10.1093/jxb/erz404 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lou, Y. Positive regulation of ams by tdf1 and the formation of a tdf1–ams complex are required for anther development in arabidopsis thaliana. New. Phytol. 217, 378–391 (2018).Article 
CAS 
PubMed 

Google Scholar 
Liu, H. Y. et al. Wheat authentication: an overview on different techniques and chemometric methods. Crit. Rev. Food Sci. Nutr. 63, 33–56 (2023).Article 
CAS 
PubMed 

Google Scholar 
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:14091556 (2014).He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (Las Vegas, USA, 2016).Kandpal, A., Mehta, A. & Sharma, A. Honey bee bearing pollen and non-pollen image classification: Vgg16 transfer learning method using different optimizing functions. Int. J. Innov. Technol. Explor. Eng. (IJITEE). 57, 2–5 (2024).
Google Scholar 
Mohsen, H. Classification using deep learning neural networks for brain tumors. Futur Comput. Inf. J. 3, 68–71 (2018).
Google Scholar 
Haselhorst, D. S. et al. The effects of seasonal and long-term climatic variability on neotropical flowering phenology: an ecoinformatic analysis of aerial pollen data. Ecol. Inf. 41, 54–63 (2017).Article 

Google Scholar 
Langford, M., Taylor, G. & Flenley, J. Computerized identification of pollen grains by texture analysis. Rev. Palaeobot Palynol. 64, 197–203 (1990).Article 

Google Scholar 
Ali, Z. et al. Delay optimization in lorawan by employing adaptive scheduling algorithm with unsupervised learning. IEEE Access. 11, 2545–2556. https://doi.org/10.1109/ACCESS.2023.3054827 (2023).Article 

Google Scholar 
Rodrigues, C. et al. Evaluation of machine learning and bag of visual words techniques for pollen grains classification. IEEE Lat Am. Trans. 13, 3498–3504 (2015).Article 

Google Scholar 
Ng, A. Y. & Jordan, M. I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In Advances in neural information processing systems, vol. 14 (2001).Yaseen, A. A., & Ahmed, S. J. Interaction effect of planting date and foliar application on some vegetative growth characters and yield of broccoli (Brassica olerasea var italica) grown under unheated plastic tunnel. In J. of Garmian University. ICBS Conference, Erbil vol. 4, pp. 405–418 (2017).Kanna, G. P. et al. Advanced deep learning techniques for early disease prediction in cauliflower plants. Sci. Rep. 13, 18475 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sharma, S. et al. A review of hybrid cauliflower development. J. New. Seeds. 6, 151–193 (2004).Article 

Google Scholar 
Kar, A., Mandal, K. & Singh, B. Environmental fate of chlorantraniliprole residues on cauliflower using quechers technique. Environ. Monit. Assess. 185, 1255–1263 (2013).Article 
CAS 
PubMed 

Google Scholar 
Dubey, S. & Jalal, A. Fruit and vegetable recognition by fusing colour and texture features of the image using machine learning. Int. J. Appl. Pattern Recognit. 2, 160–181 (2015).Article 

Google Scholar 
Maria, S. et al. Cauliflower disease recognition using machine learning and transfer learning. In Smart Systems: Innovations in Computing: Proceedings of SSIC 2021 (Springer, 2022).
Google Scholar 
Paschen, U., Pitt, L. & Kietzmann, J. Artificial intelligence: building blocks and an innovation typology. Bus. Horizons. 63, 147–155 (2020).Article 

Google Scholar 
Zhuang, Y. et al. Challenges and opportunities: from big data to knowledge in Ai 2.0. Front. Inf. Technol. Electron. Eng. 18, 3–14 (2017).Article 

Google Scholar 
Roscher, R. Explainable machine learning for scientific insights and discoveries. IEEE Access. 8, 42200–42216 (2020).Article 

Google Scholar 
Singh, A. Machine learning for high-throughput stress phenotyping in plants. Trends Plant. Sci. 21, 110–124 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wetterich, C. B., Kumar, R., Sankaran, S., Belasque Junior, J., Ehsani, R., & Marcassa, L. G. A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of Huanglongbing citrus disease in the USA and Brazil. J. Spectrosc. 1, 841738 (2013).Cao, C. Deep learning and its applications in biomedicine. Genom. Proteom. Bioinform. 16, 17–32 (2018).Article 

Google Scholar 
Singh, A. e. a. deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant. Sci. 23, 883–898. https://doi.org/10.1016/j.tplants.2018.06.006 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pound, M. P. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience. 6, gix083. https://doi.org/10.1093/gigascience/gix083 (2017).Article 

Google Scholar 
Buzzy, M., Thesma, V. & Davoodi, M. Mohammadpour Velni, J. Real-time plant leaf counting using deep object detection networks. Sensors. 20, 6896 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Yamamoto, K., Guo, W., Yoshioka, Y. & Ninomiya, S. On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors. 14, 12191–12206 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wu, X., Sahoo, D. & Hoi, S. C. Recent advances in deep learning for object detection. Neurocomputing. 396, 39–64 (2020).Article 

Google Scholar 
Xiao, Y. et al. A review of object detection based on deep learning. Multimed Tools Appl. 79, 23729–23791 (2020).Article 

Google Scholar 
Pathak, A. R., Pandey, M. & Rautaray, S. Application of deep learning for object detection. Procedia Comput. Sci. 132, 1706–1717 (2018).Article 

Google Scholar 
Lin, K. Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Front. Plant. Sci. 10, 155 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Barbedo, J. G. Factors influencing the use of deep learning for plant disease recognition. Biosyst Eng. 172, 84–91 (2018).Article 

Google Scholar 
Ramcharan, A. A mobile-based deep learning model for cassava disease diagnosis. Front. Plant. Sci. 10 https://doi.org/10.3389/fpls.2019.425916 (2019).Harakannanavar, S. et al. Plant leaf disease detection using computer vision and machine learning algorithms. Glob Transitions Proc. 3, 305–310 (2022).Article 

Google Scholar 
Uddin, T. M. et al. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J. Infect. Public. Heal. 14, 1750–1766 (2021).Article 

Google Scholar 
Shoaib, M. et al. An advanced deep learning models-based plant disease detection: a review of recent research. Front. Plant. Sci. 14, 1158933 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Ferentinos, K. P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009 (2018).Article 

Google Scholar 
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature. 521, 436–444 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
You, J. et al. Deep gaussian process for crop yield prediction based on remote sensing data. In Proceedings of the AAAI Conference on Artificial Intelligence (2017).
Google Scholar 
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning: from Basics to Practicevol. 1 (MIT Press, 2016).
Google Scholar 
Wang, A. et al. Deep transfer learning for crop yield prediction with remote sensing data. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies (2018).
Google Scholar 
Dai, H., Huang, G., Wang, J., Zeng, H. & Zhou, F. Prediction of air pollutant concentration based on one-dimensional multi-scale cnn-lstm considering spatial-temporal characteristics: a case study of xi’an, China. Atmosphere. 12, 1626 (2021).Article 
ADS 
CAS 

Google Scholar 
Meraj, T., Sharif, M. I., Raza, M., Alabrah, A., Kadry, S., & Gandomi, A. H. Computer vision-based plants phenotyping: A comprehensive survey. Iscience 27(1), (2024).Zhao, L. & Zhang, Z. A improved pooling method for convolutional neural networks. Sci. Rep. 14, 1589 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Indira, K. & Mallika, H. Classification of plant leaf disease using deep learning. J. Inst. Eng. (India): B, pp. 1–12 (2024).Bokhare, A. & Kothari, T. Emotion detection-based video recommendation system using machine learning and deep learning framework. SN Comput. Sci. 4, 215 (2023).Article 

Google Scholar 
Hassan, R. et al. Physical and Chemical Characteristics of Podo Wood-Xylem Filtered397–409 (Springer Nature Singapore, 2024).
Google Scholar 

Hot Topics

Related Articles