De novo protein design with a denoising diffusion network independent of pretrained structure prediction models

Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of protein design. Nature 537, 320–327 (2016).Article 
CAS 
PubMed 

Google Scholar 
Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).Article 
CAS 
PubMed 

Google Scholar 
Polizzi, N. F. & DeGrado, W. F. A defined structural unit enables de novo design of small-molecule–binding proteins. Science 369, 1227–1233 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints. Nature 617, 176–184 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H., Helling, R., Tang, C. & Wingreen, N. Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669 (1996).Article 
CAS 
PubMed 

Google Scholar 
Kuhlman, B. & Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl Acad. Sci. USA 97, 10383–10388 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grigoryan, G. & DeGrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011).Article 
CAS 
PubMed 

Google Scholar 
Huang, B. et al. A backbone-centred energy function of neural networks for protein design. Nature 602, 523–528 (2022).Article 
CAS 
PubMed 

Google Scholar 
Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eguchi, R. R., Choe, C. A. & Huang, P.-S. Ig-VAE: generative modeling of protein structure by direct 3D coordinate generation. PLoS Comput. Biol. 18, e1010271 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J. S., Kim, J. & Kim, P. M. Score-based generative modeling for de novo protein design. Nat. Comput. Sci. 3, 382–392 (2023).Article 
CAS 
PubMed 

Google Scholar 
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).
Google Scholar 
Chen, N. et al. Wavegrad: estimating gradients for waveform generation. In Proc. International Conference on Learning Representations (ICLR, 2021).Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. Preprint at https://arXiv.org/abs/2204.06125 (2022).Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Anand, N. & Achim, T. Protein structure and sequence generation with equivariant denoising diffusion probabilistic models. Preprint at https://arXiv.org/abs/2205.15019 (2022).Wu, K. E. et al. Protein structure generation via folding diffusion. Nat. Commun. 15, 1059 (2022).Trippe, B. L. et al. Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem. In Proc. International Conference on Learning Representations (ICLR, 2023).Ingraham, J. et al. Illuminating protein space with a programmable generative model. Nature 623, 1070–1078 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yim, J. et al. SE(3) diffusion model with application to protein backbone generation. In Proc. International Conference on Machine Learning (ICML, 2023).Zhao, H., Gallo, O., Frosio, I. & Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3, 47–57 (2016).Article 

Google Scholar 
Blau, Y., Mechrez, R., Timofte, R., Michaeli, T. & Zelnik-Manor, L. The 2018 PIRM challenge on perceptual image super-resolution. In Proc. the European Conference on Computer Vision (ECCV) Workshops (eds Leal-Taixé, L. & Roth, S.) 334–355 (2019).Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).Article 

Google Scholar 
Liu, Y. et al. Rotamer-free protein sequence design based on deep learning and self-consistency. Nat. Comput. Sci. 2, 451–462 (2022).Article 
CAS 
PubMed 

Google Scholar 
Dauparas, J. et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).Popov, V., Vovk, I., Gogoryan, V., Sadekova, T., Kudinov, M. Grad-tts: a diffusion probabilistic model for text-to-speech. in International Conference on Machine Learning, 8599–8608 (PMLR, 2021)Lee, S.-g. et al. PriorGrad: Improving conditional denoising diffusion models with data-dependent adaptive prior. In International Conference on Learning Representations (ICLR, 2022).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 

Google Scholar 
Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sillitoe, I. et al. CATH: increased structural coverage of functional space. Nucleic Acids Res. 49, D266–D273 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004).Article 
CAS 
PubMed 

Google Scholar 
Xu, J. & Zhang, Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26, 889–895 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, Y. & AlQuraishi, M. Generating Novel, Designable, and Diverse Protein Structures by Equivariantly Diffusing Oriented Residue Clouds. In Proc. International Conference on Machine Learning (ICML, 2023).van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn Res. 9, 2579–2605 (2008).
Google Scholar 
Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, W. C., Reniere, M. L., Skaar, E. P. & Murphy, M. E. Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus. J. Biol. Chem. 283, 30957–30963 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Skaar, E. P., Gaspar, A. H. & Schneewind, O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J. Biol. Chem. 279, 436–443 (2004).Article 
CAS 
PubMed 

Google Scholar 
Fetics, S. K. et al. Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure 23, 505–516 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).Remy, I., Campbell-Valois, F. & Michnick, S. W. Detection of protein–protein interactions using a simple survival protein–fragment complementation assay based on the enzyme dihydrofolate reductase. Nat. Protoc. 2, 2120–2125 (2007).Article 
CAS 
PubMed 

Google Scholar 
Jing, B., Eismann, S., Suriana, P., Townshend, R. J., Dror, R. Learning from protein structure with geometric vector perceptrons. In Proc. International Conference on Learning Representations (ICLR, 2021).Wang, G. & Dunbrack, R. L. Jr PISCES: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003).Article 
CAS 
PubMed 

Google Scholar 
Wang, S. Source data for manuscript: de novo protein design with a denoising diffusion network independent of pre-trained structure prediction models. Zenodo https://doi.org/10.5281/zenodo.10911626 (2024).Wang, S. De novo protein design with a denoising diffusion network independent of pre-trained structure prediction models. Zenodo https://doi.org/10.5281/zenodo.10947360 (2024).

Hot Topics

Related Articles