A large multi-focus dataset for white blood cell classification

Stouten, K., Riedl, J. A., Levin, M.-D. & Van Gelder, W. Examination of peripheral blood smears: Performance evaluation of a digital microscope system using a large-scale leukocyte database. International Journal of Laboratory Hematology 37, e137–e140, https://doi.org/10.1111/ijlh.12391 (2015).Article 
CAS 
PubMed 

Google Scholar 
Koepke, J. A. Reference Leukocyte (WBC) Differential Count (Proportional) and Evaluation of Instrumental Methods (Clinical and Laboratory Standards Institute, Wayne, Pa., 2007), 2nd ed edn.Nam, M. et al. Digital Morphology Analyzer Sysmex DI-60 vs. Manual Counting for White Blood Cell Differentials in Leukopenic Samples: A Comparative Assessment of Risk and Turnaround Time. Annals of Laboratory Medicine 42, 398–405, https://doi.org/10.3343/alm.2022.42.4.398 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yoon, S. et al. Performance of digital morphology analyzer Vision Pro on white blood cell differentials. Clinical Chemistry and Laboratory Medicine (CCLM) 59, 1099–1106, https://doi.org/10.1515/cclm-2020-1701 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yoon, S. & Kim, H. R. Analytical performance of the digital morphology analyzer Sysmex DI-60 for body fluid cell differential counts. PLOS ONE 18, e0288551, https://doi.org/10.1371/journal.pone.0288551 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Njoroge, S. W. & Nichols, J. H. Risk Management in the Clinical Laboratory. Annals of Laboratory Medicine 34, 274–278, https://doi.org/10.3343/alm.2014.34.4.274 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Yao, J. et al. High-Efficiency Classification of White Blood Cells Based on Object Detection. Journal of Healthcare Engineering 2021, 1615192, https://doi.org/10.1155/2021/1615192 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Dong, N., Zhai, M.-d, Chang, J.-f & Wu, C.-h A self-adaptive approach for white blood cell classification towards point-of-care testing. Applied Soft Computing 111, 107709, https://doi.org/10.1016/j.asoc.2021.107709 (2021).Article 

Google Scholar 
Boldú, L., Merino, A., Acevedo, A., Molina, A. & Rodellar, J. A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine 202, 105999, https://doi.org/10.1016/j.cmpb.2021.105999 (2021).Article 
PubMed 

Google Scholar 
Acevedo, A. et al. A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data in Brief 30, 105474, https://doi.org/10.1016/j.dib.2020.105474 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, M. et al. A deep learning model for detection of leukocytes under various interference factors. Scientific Reports 13, 2160, https://doi.org/10.1038/s41598-023-29331-3 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yao, X., Sun, K., Bu, X., Zhao, C. & Jin, Y. Classification of white blood cells using weighted optimized deformable convolutional neural networks. Artificial Cells, Nanomedicine, and Biotechnology 49, 147–155, https://doi.org/10.1080/21691401.2021.1879823 (2021).Article 
PubMed 

Google Scholar 
Bodzas, A., Kodytek, P. & Zidek, J. A high-resolution large-scale dataset of pathological and normal white blood cells. Scientific Data 10, 466, https://doi.org/10.1038/s41597-023-02378-7 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kouzehkanan, Z. M. et al. A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm. Scientific Reports 12, 1123, https://doi.org/10.1038/s41598-021-04426-x (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, S. et al. A Large Multi-Focus Dataset for White Blood Cell Classification, Figshare https://doi.org/10.6084/m9.figshare.c.6844605 (2024).Liu, S. & Hua, H. Extended depth-of-field microscopic imaging with a variable focus microscope objective. Optics Express 19, 353–362, https://doi.org/10.1364/OE.19.000353 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Manescu, P. et al. Content aware multi-focus image fusion for high-magnification blood film microscopy. Biomedical Optics Express 13, 1005–1016, https://doi.org/10.1364/BOE.448280 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Forster, B., Van De Ville, D., Berent, J., Sage, D. & Unser, M. Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and Technique 65, 33–42, https://doi.org/10.1002/jemt.20092 (2004).Article 
PubMed 

Google Scholar 
Liu, Y., Wang, L., Li, H. & Chen, X. Multi-focus image fusion with deep residual learning and focus property detection. Information Fusion 86–87, 1–16, https://doi.org/10.1016/j.inffus.2022.06.001 (2022).Article 

Google Scholar 
Kausar, N., Majid, A. & Javed, S. G. Developing learning based intelligent fusion for deblurring confocal microscopic images. Engineering Applications of Artificial Intelligence 55, 339–352, https://doi.org/10.1016/j.engappai.2016.08.006 (2016).Article 

Google Scholar 
Dehghani, S., Busam, B., Navab, N. & Nasseri, A. BFS-Net: Weakly Supervised Cell Instance Segmentation from Bright-Field Microscopy Z-Stacks https://doi.org/10.48550/ARXIV.2206.04558 (2022).Loddo, A. & Putzu, L. On the Effectiveness of Leukocytes Classification Methods in a Real Application Scenario. AI 2, 394–412, https://doi.org/10.3390/ai2030025 (2021).Article 

Google Scholar 
Zhang, J. & Zhang, T. Focusing Algorithm of Automatic Control Microscope Based on Digital Image Processing. Journal of Sensors 2021, 5643054, https://doi.org/10.1155/2021/5643054 (2021).Article 

Google Scholar 
Dastidar, T. R. Automated Focus Distance Estimation for Digital Microscopy Using Deep Convolutional Neural Networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1049–1056, https://doi.org/10.1109/CVPRW.2019.00137 (IEEE, Long Beach, CA, USA, 2019).Liao, J. et al. Deep learning-based single-shot autofocus method for digital microscopy. Biomedical Optics Express 13, 314, https://doi.org/10.1364/BOE.446928 (2022).Article 
PubMed 

Google Scholar 
Yazdanfar, S. et al. Simple and robust image-based autofocusing for digital microscopy. Optics Express 16, 8670, https://doi.org/10.1364/OE.16.008670 (2008).Article 
ADS 
PubMed 

Google Scholar 
Mazilu, I. et al. Defocus Blur Synthesis and Deblurring via Interpolation and Extrapolation in Latent Space. In Tsapatsoulis, N. et al. (eds.) Computer Analysis of Images and Patterns, vol. 14185, 201–211, https://doi.org/10.1007/978-3-031-44240-7_20 (Springer Nature Switzerland, Cham, 2023).Lébl, M., Šroubek, F. & Flusser, J. Impact of Image Blur on Classification and Augmentation of Deep Convolutional Networks. In Gade, R., Felsberg, M. & Kämäräinen, J.-K. (eds.) Image Analysis, vol. 13886, 108–117, https://doi.org/10.1007/978-3-031-31438-4_8 (Springer Nature Switzerland, Cham, 2023).Yoshihara, S., Fukiage, T. & Nishida, S. Does training with blurred images bring convolutional neural networks closer to humans with respect to robust object recognition and internal representations. Frontiers in Psychology 14, 1047694, https://doi.org/10.3389/fpsyg.2023.1047694 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Bujimalla, S., Subedar, M. & Tickoo, O. Data augmentation to improve robustness of image captioning solutions (2021).Bae, C. Y. et al. Embedded-deep-learning-based sample-to-answer device for on-site malaria diagnosis. Frontiers in Bioengineering and Biotechnology 12, 1392269, https://doi.org/10.3389/fbioe.2024.1392269 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Choi, J.-H. et al. Hydrogel-Based Stamping Technology for Solution-Free Blood Cell Staining. ACS Applied Materials & Interfaces 13, 22124–22130, https://doi.org/10.1021/acsami.0c22521 (2021).Article 
CAS 

Google Scholar 
Tabe, Y. et al. Performance evaluation of the digital cell imaging analyzer DI-60 integrated into the fully automated Sysmex XN hematology analyzer system. Clinical Chemistry and Laboratory Medicine (CCLM) 53, https://doi.org/10.1515/cclm-2014-0445 (2015).Ceelie, H., Dinkelaar, R. B. & Van Gelder, W. Examination of peripheral blood films using automated microscopy; evaluation of Diffmaster Octavia and Cellavision DM96. Journal of Clinical Pathology 60, 72–79, https://doi.org/10.1136/jcp.2005.035402 (2007).Article 
CAS 
PubMed 

Google Scholar 
Torre, V. & Poggio, T. A. On Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 147–163, https://doi.org/10.1109/TPAMI.1986.4767769 (1986).Article 

Google Scholar 

Hot Topics

Related Articles