Comparative transcriptomic analysis validates iPSC derived in-vitro progressive fibrosis model as a screening tool for drug discovery and development in systemic sclerosis

Hachulla, E. & Launay, D. Diagnosis and classification of systemic sclerosis. Clin. Rev. Allergy Immunol. 40, 78–83 (2011).Article 
PubMed 

Google Scholar 
O’Reilly, S. Innate immunity in systemic sclerosis pathogenesis. Clin. Sci. 126, 329–337 (2014).Article 

Google Scholar 
Sargent, J. L. & Whitfield, M. L. Capturing the heterogeneity in systemic sclerosis with genome-wide expression profiling. Expert Rev. Clin. Immunol. 7, 463–473 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, C., Oikonomopoulos, A., Sayed, N. & Wu, J. C. Modeling human diseases with induced pluripotent stem cells: From 2D to 3D and beyond. Development 145, dev56166 (2018).Article 

Google Scholar 
Vijayaraj, P. et al. Modeling progressive fibrosis with pluripotent stem cells identifies an anti-fibrotic small molecule. Cell Rep. 29, 3488–3505 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Xu, X. et al. Transcriptional insights into pathogenesis of cutaneous systemic sclerosis using pathway driven meta-analysis assisted by machine learning methods. PLoS One 15, e0242863 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Castro, S. V. & Jimenez, S. A. Biomarkers in systemic sclerosis. Biomark. Med. 4, 133–147 (2010).Article 
PubMed 

Google Scholar 
Desroy, N. et al. Discovery of 2-[[2-Ethyl-6-[4-[2-(3-hydroxyazetidin-1-yl)-2-oxoethyl] piperazin-1-yl]-8-methylimidazo [1, 2-a] pyridin-3-yl] methylamino]-4-(4-fluorophenyl) thiazole-5-carbonitrile (GLPG1690), a first-in-class autotaxin inhibitor undergoing clinical evaluation for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 60, 3580–3590 (2017).Article 
PubMed 

Google Scholar 
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15–21 (2013).Article 
PubMed 

Google Scholar 
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article 
PubMed 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biolo. 15, 1–21 (2014).
Google Scholar 
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 28, 882–883 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 8, 118–127 (2007).Article 
PubMed 

Google Scholar 
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 (2005).Article 
PubMed 
PubMed Central 

Google Scholar 
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 16, 284–287 (2012).Article 

Google Scholar 
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lopez, R. et al. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).Article 
PubMed Central 

Google Scholar 
Traag, V. A., Waltman, L. & Van Eck, N. J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep.. 9, 5233 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).Article 
PubMed Central 

Google Scholar 
Bretschneider, T. et al. Ultrafast and predictive mass spectrometry-based autotaxin assays for label-free potency screening. SLAS Discov. 22, 425–432 (2017).Article 
PubMed 

Google Scholar 
Xu, S. et al. IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells. Eur. J. Pharmacol. 894, 173817 (2021).Article 
PubMed 

Google Scholar 
Liao, X. H. et al. VEGF-A stimulates STAT3 activity via nitrosylation of myocardin to regulate the expression of vascular smooth muscle cell differentiation markers. Sci. Rep. 7, 2660 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Peng, G. et al. The HIF1α-PDGFD-PDGFRα axis controls glioblastoma growth at normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin. J. Exp. Clin. Cancer Res. 40, 1–16 (2021).Article 

Google Scholar 
Zhang, H. et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J. Clin. Investig. 117, 730–738 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Filippou, P. S., Karagiannis, G. S. & Constantinidou, A. Midkine (MDK) growth factor: A key player in cancer progression and a promising therapeutic target. Oncogene 39, 2040–2054 (2020).Article 
PubMed 

Google Scholar 
Hu, K. et al. Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget 7, 7816 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Chong, H. C. et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol. Therapy 22, 1593–1604 (2014).Article 

Google Scholar 
Wang, Q. et al. HIF-1α up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells. Mol. Biol. Rep. 40, 3723–3729 (2013).Article 
PubMed 

Google Scholar 
Tirado-Hurtado, I., Fajardo, W. & Pinto, J. A. DNA damage inducible transcript 4 gene: The switch of the metabolism as potential target in cancer. Front. Oncol. 8, 106 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, X., Hu, Z., Wang, Z., Cui, Y. & Cui, X. Angiopoietin-like protein 2 is an important facilitator of tumor proliferation, metastasis, angiogenesis and glycolysis in osteosarcoma. Am. J. Trans. Res. 11, 6341 (2019).
Google Scholar 
Horiguchi, H. et al. Angiopoietin-like protein 2 renders colorectal cancer cells resistant to chemotherapy by activating spleen tyrosine kinase–phosphoinositide 3-kinase-dependent anti-apoptotic signaling. Cancer Sci. 105, 1550–1559 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Limbad, C. et al. Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. Iscience. 25, 103848 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lin, X. et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs. Aging. 11, 523 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Takaya, K., Asou, T. & Kishi, K. Downregulation of senescence-associated secretory phenotype by knockdown of secreted frizzled-related protein 4 contributes to the prevention of skin aging. Aging 14, 8167 (2022).PubMed 
PubMed Central 

Google Scholar 
Liu, X. L. et al. FOXL2 suppresses proliferation, invasion and promotes apoptosis of cervical cancer cells. Int. J. Clin. Exp. Pathol. 7, 1534 (2014).PubMed 
PubMed Central 

Google Scholar 
Wu, D. et al. Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nat. Metab. 3, 714–727 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Katoh, D. et al. Tenascin-C induces phenotypic changes in fibroblasts to myofibroblasts with high contractility through the integrin αvβ1/transforming growth factor β/SMAD signaling axis in human breast cancer. Am. J. Pathol. 190, 2123–2135 (2020).Article 
PubMed 

Google Scholar 
Zhuang, Y., Li, X., Zhan, P., Pi, G. & Wen, G. MMP11 promotes the proliferation and progression of breast cancer through stabilizing Smad2 protein. Oncol. Rep. 45, 1–1 (2021).Article 

Google Scholar 
Takano, M. et al. ANGPTL2 promotes inflammation via integrin α5β1 in chondrocytes. Cartilage 13, 885S-897S (2021).Article 
PubMed 

Google Scholar 
Walton, K. L., Johnson, K. E. & Harrison, C. A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front. Pharmacol. 8, 461 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Flynn, R. S. et al. Endogenous IGFBP-3 regulates excess collagen expression in intestinal smooth muscle cells of Crohn’s disease strictures. Inflamm. Bowel Dis. 17, 193–201 (2011).Article 
PubMed 

Google Scholar 
Zheng, Z. et al. CRLF1 is a key regulator in the ligamentum flavum hypertrophy. Front. Cell Dev. Biol. 8, 858 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, Z. et al. UNC5B promotes vascular endothelial cell senescence via the ROS-mediated P53 pathway. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2021/5546711 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Xu, X. H. et al. Interleukin-6 released by oral lichen planus myofibroblasts promotes angiogenesis. Exp. Ther. Med. 21, 1–1 (2021).Article 

Google Scholar 
Lessey-Morillon, E. C. et al. The RhoA GEF, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J. Immunol. 192, 3390 (2014).Article 
PubMed 

Google Scholar 
Mengie Ayele, T., Tilahun Muche, Z., Behaile Teklemariam, A., Bogale Kassie, A. & Chekol Abebe, E. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: A systemic review. J. Inflamm. Res. 15, 1349–1364 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Oh, S. et al. Effect of mechanical stretch on the DNCB-induced proinflammatory cytokine secretion in human keratinocytes. Sci. Rep.. 9, 5156 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Di, X. et al. Cellular mechanotransduction in health and diseases: From molecular mechanism to therapeutic targets. Signal Transduct Target. Therapy 8, 282 (2023).Article 

Google Scholar 
Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).Article 
PubMed 

Google Scholar 
Dupont, S., Morsut, L., Aragona, M., et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–183. https://doi.org/10.1038/nature10137 Reddy, P., Deguchi, M., Cheng, Y., & Hsueh, A. J. (2013)Totaro, A., Panciera, T. & Piccolo, S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol 20, 888–899 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
van der Stoel, M. et al. DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis. J Cell Sci. 133(3), jcs239947 (2020).Article 
PubMed 

Google Scholar 
Xie, Z. et al. Mechanical force promotes dimethylarginine dimethylaminohydrolase 1-mediated hydrolysis of the metabolite asymmetric dimethylarginine to enhance bone formation. Nat. Commun. 13(1), 50 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Chow, S. E., Hsu, C. C., Yang, C. T. & Meir, Y. J. YAP co-localizes with the mitotic spindle and midbody to safeguard mitotic division in lung-cancer cells. FEBS J. 290(24), 5704–5719 (2023).Article 
PubMed 

Google Scholar 
Nakamura, F. The role of mechanotransduction in contact inhibition of locomotion and proliferation. Int. J. Mol. Sci. 25(4), 2135 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, Y. P., Pan, L. L. & Kong, C. C. Stathmin 1 promotes the progression of liver cancer through interacting with YAP1. Eur. Rev. Med. Pharmacol. Sci. 24(13), 7335–7344 (2020).PubMed 

Google Scholar 
Lee, Y. B. et al. Function of a complex of p-Y42 RhoA GTPase and pyruvate kinase M2 in EGF signaling pathway in glioma cells. J. Neurochem. https://doi.org/10.1111/jnc.16210 (2024).Article 
PubMed 

Google Scholar 
Mao, M. et al. HJURP regulates cell proliferation and chemo-resistance via YAP1/NDRG1 transcriptional axis in triple-negative breast cancer. Cell Death Dis. 13(4), 396 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yu, Z. et al. IL-17A promotes psoriasis-associated keratinocyte proliferation through ACT1-dependent activation of YAP-AREG Axis. J. Invest. Dermatol. 142(9), 2343–2352 (2022).Article 
PubMed 

Google Scholar 
Lin, K. C. et al. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat. Cell Biol. 9(8), 996–1002 (2018).Article 

Google Scholar 
Xiao, Y. & Dong, J. The hippo signaling pathway in cancer: A cell cycle perspective. Cancers 13(24), 6214 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Brindley, D. N. & Raouf, A. Autotaxin is an important component of the tumor microenvironment and a major modulator of therapy responses for breast cancer. In Biological Mechanisms and the Advancing Approaches to Overcoming Cancer Drug Resistance (eds Freywald, A. & Vizeacoumar, F.) 47–63 (Elsevier, 2021).Chapter 

Google Scholar 
Hernandez-Gonzalez, F. et al. Cellular senescence in lung fibrosis. Int. J. Mol. Sci. 22, 7012 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Maciejewska, M. et al. Hypoxia-inducible factor-1α (HIF-1α) as a biomarker for changes in microcirculation in individuals with systemic sclerosis. Dermatol. Therapy 13, 1549–1560 (2023).Article 

Google Scholar 
Mao, J. et al. Hypoxia-induced interstitial transformation of microvascular endothelial cells by mediating HIF-1α/VEGF signaling in systemic sclerosis. Plos one 17, e0263369 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Castelino, F. V. et al. An autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis. Arthritis Rheumatol. 68, 2964–2974 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z., Yao, L., Yang, J., Wang, Z. & Du, G. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia. Mol. Med. Rep. 18, 3547–3554 (2018).PubMed 
PubMed Central 

Google Scholar 
Cain, R. J. & Ridley, A. J. Phosphoinositide 3-kinases in cell migration. Biol. Cell. 101, 13–29 (2009).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles