Genome-wide association testing beyond SNPs

Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).Article 

Google Scholar 
Barrett, J. C. & Cardon, L. R. Evaluating coverage of genome-wide association studies. Nat. Genet. 38, 659–662 (2006).Article 

Google Scholar 
LaFramboise, T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res. 37, 4181–4193 (2009).Article 

Google Scholar 
Hofker, M. H., Fu, J. & Wijmenga, C. The genome revolution and its role in understanding complex diseases. Biochim. Biophys. Acta 1842, 1889–1895 (2014).Article 

Google Scholar 
Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).Article 

Google Scholar 
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Article 

Google Scholar 
Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591, 211–219 (2021).Article 

Google Scholar 
Ochoa, D. et al. The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).Article 

Google Scholar 
Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).Article 

Google Scholar 
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700 000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).Article 

Google Scholar 
Zhu, H. & Zhou, X. Statistical methods for SNP heritability estimation and partition: a review. Comput. Struct. Biotechnol. J. 18, 1557–1568 (2020).Article 

Google Scholar 
Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).Article 

Google Scholar 
Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).Article 

Google Scholar 
Yang, L. A practical guide for structural variation detection in the human genome. Curr. Protoc. Hum. Genet. 107, e103 (2020).Article 

Google Scholar 
Taghizadeh, S. et al. Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds. Sci. Rep. 12, 8834 (2022).Article 

Google Scholar 
Delledonne, A. et al. Copy number variant scan in more than four thousand Holstein cows bred in Lombardy, Italy. PLoS ONE 19, e0303044 (2024).Article 

Google Scholar 
Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).Article 

Google Scholar 
Verlouw, J. A. M. et al. A comparison of genotyping arrays. Eur. J. Hum. Genet. 29, 1611–1624 (2021).Article 

Google Scholar 
Rapti, M. et al. CoverageMaster: comprehensive CNV detection and visualization from NGS short reads for genetic medicine applications. Brief. Bioinform. 23, bbac049 (2022).Article 

Google Scholar 
Tanjo, T., Kawai, Y., Tokunaga, K., Ogasawara, O. & Nagasaki, M. Practical guide for managing large-scale human genome data in research. J. Hum. Genet. 66, 39–52 (2021).Article 

Google Scholar 
Vacic, V. et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471, 499–503 (2011).Article 

Google Scholar 
Fitzgerald, T. & Birney, E. CNest: a novel copy number association discovery method uncovers 862 new associations from 200,629 whole-exome sequence datasets in the UK Biobank. Cell Genom. 2, 100167 (2022).Article 

Google Scholar 
Montavon, T., Thevenet, L. & Duboule, D. Impact of copy number variations (CNVs) on long-range gene regulation at the HoxD locus. Proc. Natl Acad. Sci. USA 109, 20204–20211 (2012).Article 

Google Scholar 
Conrad, D. F. & Hurles, M. E. The population genetics of structural variation. Nat. Genet. 39, S30–S36 (2007).Article 

Google Scholar 
Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).Article 

Google Scholar 
Lee, C. & Scherer, S. W. The clinical context of copy number variation in the human genome. Expert Rev. Mol. Med. 12, e8 (2010).Article 

Google Scholar 
Lupski, J. R. Genomic rearrangements and sporadic disease. Nat. Genet. 39, S43–S47 (2007).Article 

Google Scholar 
Campbell, C. D. & Eichler, E. E. Properties and rates of germline mutations in humans. Trends Genet. 29, 575–584 (2013).Article 

Google Scholar 
Belyeu, J. R. et al. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. Am. J. Hum. Genet. 108, 597–607 (2021).Article 

Google Scholar 
Gudmundsson, S. et al. Variant interpretation using population databases: lessons from gnomAD. Hum. Mutat. 43, 1012–1030 (2022).Article 

Google Scholar 
Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).Article 

Google Scholar 
Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).Article 

Google Scholar 
Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).Article 

Google Scholar 
Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).Article 

Google Scholar 
Wright, C. F. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385, 1305–1314 (2015).Article 

Google Scholar 
Coutelier, M. et al. Combining callers improves the detection of copy number variants from whole-genome sequencing. Eur. J. Hum. Genet. 30, 178–186 (2022).Article 

Google Scholar 
Hollox, E. J., Zuccherato, L. W. & Tucci, S. Genome structural variation in human evolution. Trends Genet. 38, 45–58 (2022).Article 

Google Scholar 
Rossi, N. et al. Ethnic-specific association of amylase gene copy number with adiposity traits in a large Middle Eastern biobank. NPJ Genom. Med. 6, 8 (2021).Article 

Google Scholar 
Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).Article 

Google Scholar 
Higuchi, R., Iwane, T., Iida, A. & Nakajima, K. Copy number variation of the salivary amylase gene and glucose metabolism in healthy young Japanese women. J. Clin. Med. Res. 12, 184–189 (2020).Article 

Google Scholar 
Rouleau, M. et al. Extensive metabolic consequences of human glycosyltransferase gene knockouts in prostate cancer. Br. J. Cancer 128, 285–296 (2023).Article 

Google Scholar 
Mafune, A. et al. Homozygous deletions of UGT2B17 modifies effects of smoking on TP53-mutations and relapse of head and neck carcinoma. BMC Cancer 15, 205 (2015).Article 

Google Scholar 
Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041–3055.e25 (2022).Article 

Google Scholar 
Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9, 4340 (2018).Article 

Google Scholar 
Cook, C. B. et al. Somatic mosaicism detected by genome-wide sequencing in 500 parent–child trios with suspected genetic disease: clinical and genetic counseling implications. Cold Spring Harb. Mol. Case Stud. 7, a006125 (2021).Article 

Google Scholar 
Elrick, H. et al. SAVANA: reliable analysis of somatic structural variants and copy number aberrations in clinical samples using long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.07.25.604944 (2024) .Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).Article 

Google Scholar 
Thaxton, C. et al. Utilizing ClinGen gene-disease validity and dosage sensitivity curations to inform variant classification. Hum. Mutat. 43, 1031–1040 (2022).Article 

Google Scholar 
Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).Article 

Google Scholar 
Rice, A. M. & McLysaght, A. Dosage-sensitive genes in evolution and disease. BMC Biol. 15, 78 (2017).Article 

Google Scholar 
All of Us Research Program Genomics Investigators. Genomic data in the All of Us Research Program. Nature 627, 340–346 (2024).Article 

Google Scholar 
Auwerx, C. et al. Rare copy-number variants as modulators of common disease susceptibility. Genome Med. 16, 5 (2024).Article 

Google Scholar 
Kirschner, R. et al. RPGR transcription studies in mouse and human tissues reveal a retina-specific isoform that is disrupted in a patient with X-linked retinitis pigmentosa. Hum. Mol. Genet. 8, 1571–1578 (1999).Article 

Google Scholar 
Shaikh, T. H. Copy number variation disorders. Curr. Genet. Med. Rep. 5, 183–190 (2017).Article 

Google Scholar 
Xu, H. H. et al. Familial 5.29 Mb deletion in chromosome Xq22.1-q22.3 with a normal phenotype: a rare pedigree and literature review. BMC Med. Genomics 16, 111 (2023).Article 

Google Scholar 
Naseer, M. I. et al. Copy number variations in Saudi family with intellectual disability and epilepsy. BMC Genomics 17, 757 (2016).Article 

Google Scholar 
Wolstencroft, J. et al. Neuropsychiatric risk in children with intellectual disability of genetic origin: IMAGINE, a UK national cohort study. Lancet Psychiatry 9, 715–724 (2022).Article 

Google Scholar 
Zarrei, M. et al. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum. Mol. Genet. 32, 2411–2421 (2023).Article 

Google Scholar 
Auwerx, C. et al. The individual and global impact of copy-number variants on complex human traits. Am. J. Hum. Genet 109, 647–668 (2022).Article 

Google Scholar 
Ceyhan-Birsoy, O. et al. Next generation sequencing-based copy number analysis reveals low prevalence of deletions and duplications in 46 genes associated with genetic cardiomyopathies. Mol. Genet. Genom. Med. 4, 143–151 (2016).Article 

Google Scholar 
Singer, E. S. et al. Characterization of clinically relevant copy-number variants from exomes of patients with inherited heart disease and unexplained sudden cardiac death. Genet. Med. 23, 86–93 (2021).Article 

Google Scholar 
Nfonsam, L. et al. ALU transposition induces familial hypertrophic cardiomyopathy. Mol. Genet. Genom. Med. 8, e951 (2020).Article 

Google Scholar 
Wilfert, A. B., Sulovari, A., Turner, T. N., Coe, B. P. & Eichler, E. E. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med 9, 101 (2017).Article 

Google Scholar 
Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).Article 

Google Scholar 
Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).Article 

Google Scholar 
Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat. Med. 26, 1912–1918 (2020).Article 

Google Scholar 
Maury, E. A. et al. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. Cell Genom. 3, 100356 (2023).Article 

Google Scholar 
Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 185, 4409–4427.e18 (2022).Article 

Google Scholar 
Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).Article 

Google Scholar 
Hippman, C. & Nislow, C. Pharmacogenomic testing: clinical evidence and implementation challenges. J. Pers. Med. 9, 10 (2019).Article 

Google Scholar 
Crews, K. R. et al. Clinical pharmacogenetics implementation consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin. Pharmacol. Ther. 110, 888–896 (2021).Article 

Google Scholar 
Twesigomwe, D. et al. Characterization of CYP2D6 pharmacogenetic variation in sub-Saharan African populations. Clin. Pharmacol. Ther. 113, 643–659 (2023).Article 

Google Scholar 
Twist, G. P. et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. NPJ Genom. Med. 1, 15007 (2016).Article 

Google Scholar 
Lee, S. B. et al. Stargazer: a software tool for calling star alleles from next-generation sequencing data using CYP2D6 as a model. Genet. Med. 21, 361–372 (2019).Article 

Google Scholar 
Chen, X. et al. Cyrius: accurate CYP2D6 genotyping using whole-genome sequencing data. Pharmacogenomics J. 21, 251–261 (2021).Article 

Google Scholar 
Twesigomwe, D. et al. StellarPGx: a nextflow pipeline for calling star alleles in cytochrome P450 genes. Clin. Pharmacol. Ther. 110, 741–749 (2021).Article 

Google Scholar 
Cavallari, L. H. & Johnson, J. A. A case for genotype-guided pain management. Pharmacogenomics 20, 705–708 (2019).Article 

Google Scholar 
Tayeh, M. K. et al. Clinical pharmacogenomic testing and reporting: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 24, 759–768 (2022).Article 

Google Scholar 
Singh, A. K. et al. Detecting copy number variation in next generation sequencing data from diagnostic gene panels. BMC Med. Genomics 14, 214 (2021).Article 

Google Scholar 
Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).Article 

Google Scholar 
Behera, S. et al. Comprehensive and accurate genome analysis at scale using DRAGEN accelerated algorithms. Preprint at bioRxiv https://doi.org/10.1101/2024.01.02.573821 (2024).Hujoel, M. L. A. et al. Influences of rare copy-number variation on human complex traits. Cell 185, 4233–4248.e27 (2022).Article 

Google Scholar 
Gabrielaite, M. et al. A comparison of tools for copy-number variation detection in germline whole exome and whole genome sequencing data. Cancers 13, 6283 (2021).Article 

Google Scholar 
Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 60 (2021).Article 

Google Scholar 
Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).Article 

Google Scholar 
Gross, A. M. et al. Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease. Genet. Med. 21, 1121–1130 (2019).Article 

Google Scholar 
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet 53, 1097–1103 (2021).Article 

Google Scholar 
Romdhane, L. et al. Ethnic and functional differentiation of copy number polymorphisms in Tunisian and HapMap population unveils insights on genome organizational plasticity. Sci. Rep. 14, 4654 (2024).Article 

Google Scholar 
Fadista, J., Manning, A. K., Florez, J. C. & Groop, L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202–1205 (2016).Article 

Google Scholar 
Kaler, A. S. & Purcell, L. C. Estimation of a significance threshold for genome-wide association studies. BMC Genomics 20, 618 (2019).Article 

Google Scholar 
Null, M. et al. Genome-wide analysis of copy number variants and normal facial variation in a large cohort of Bantu Africans. HGG Adv. 3, 100082 (2022).
Google Scholar 
Hujoel, M. L. A. et al. Hidden protein-altering variants influence diverse human phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2023.06.07.544066 (2023).Li, S., Carss, K. J., Halldorsson, B. V. & Cortes, A. UK biobank whole-genome sequencing consortium. whole-genome sequencing of half-a-million UK biobank participants. Preprint at bioRxiv https://doi.org/10.1101/2023.12.06.23299426 (2023).Halldorsson, B. V. et al. The sequences of 150,119 genomes in the UK Biobank. Nature 607, 732–740 (2022).Article 

Google Scholar 
Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat. Genet. 53, 779–786 (2021).Article 

Google Scholar 
Eggertsson, H. P. et al. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. Nat. Commun. 10, 5402 (2019).Article 

Google Scholar 
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).Article 

Google Scholar 
Wang, Q. et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597, 527–532 (2021).Article 

Google Scholar 
Li, Y. R. et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat. Commun. 11, 255 (2020).Article 

Google Scholar 
Aguirre, M., Rivas, M. A. & Priest, J. Phenome-wide burden of copy-number variation in the UK biobank. Am. J. Hum. Genet. 105, 373–383 (2019).Article 

Google Scholar 
Babadi, M. et al. GATK-gCNV enables the discovery of rare copy number variants from exome sequencing data. Nat. Genet. 55, 1589–1597 (2023).Article 

Google Scholar 
Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).Article 

Google Scholar 
Zhan, X., Girirajan, S., Zhao, N., Wu, M. C. & Ghosh, D. A novel copy number variants kernel association test with application to autism spectrum disorders studies. Bioinformatics 32, 3603–3610 (2016).Article 

Google Scholar 
Dougherty, M. L. et al. Transcriptional fates of human-specific segmental duplications in brain. Genome Res. 28, 1566–1576 (2018).Article 

Google Scholar 
Egorova, T. V. et al. In-frame deletion of dystrophin exons 8–50 results in DMD phenotype. Int. J. Mol. Sci. 24, 9117 (2023).Article 

Google Scholar 
Schmitz, D. et al. Copy number variations and their effect on the plasma proteome. Genetics 225, iyad179 (2023).Article 

Google Scholar 
de Los Campos, G., Grueneberg, A., Funkhouser, S., Pérez-Rodríguez, P. & Samaddar, A. Fine mapping and accurate prediction of complex traits using Bayesian Variable Selection models applied to biobank-size data. Eur. J. Hum. Genet. 31, 313–320 (2023).Article 

Google Scholar 
Broekema, R. V., Bakker, O. B. & Jonkers, I. H. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Open Biol. 10, 190221 (2020).Article 

Google Scholar 
Zhang, C., Cerveira, E., Rens, W. & Lee, C. Multicolor fluorescence in situ hybridization (FISH) approaches for simultaneous analysis of the entire human genome. Curr. Protoc. Hum. Genet. 99, e70 (2018).Article 

Google Scholar 
Gribble, S. M., Ng, B. L., Prigmore, E., Fitzgerald, T. & Carter, N. P. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays. Nat. Protoc. 4, 1722–1736 (2009).Article 

Google Scholar 
Mantere, T. et al. Optical genome mapping enables constitutional chromosomal aberration detection. Am. J. Hum. Genet. 108, 1409–1422 (2021).Article 

Google Scholar 
Schrauwen, I. et al. Optical genome mapping unveils hidden structural variants in neurodevelopmental disorders. Sci. Rep. 14, 11239 (2024).Article 

Google Scholar 
Louzada, S. & Yang, F. in Cancer Cytogenetics and Cytogenomics (eds. Ye, J. C. & Heng, H. H.) 185–203. Methods in Molecular Biology series vol. 2825 (Springer, 2024).Choi, J. et al. A whole-genome reference panel of 14,393 individuals for East Asian populations accelerates discovery of rare functional variants. Sci. Adv. 9, eadg6319 (2023).Article 

Google Scholar 
Lepamets, M. et al. Omics-informed CNV calls reduce false-positive rates and improve power for CNV-trait associations. HGG Adv. 3, 100133 (2022).
Google Scholar 
Hujoel, M. L. A. et al. Protein-altering variants at copy number-variable regions influence diverse human phenotypes. Nat. Genet. 56, 569–578 (2024).Article 

Google Scholar 
Gordeeva, V. et al. Benchmarking germline CNV calling tools from exome sequencing data. Sci. Rep. 11, 14416 (2021).Article 

Google Scholar 
Zhou, Z., Wang, W., Wang, L. S. & Zhang, N. R. Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34, 2349–2355 (2018).Article 

Google Scholar 
Montanucci, L. et al. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat. Commun. 14, 4392 (2023).Article 

Google Scholar 
Owen, D. et al. Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics 19, 867 (2018).Article 

Google Scholar 
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article 

Google Scholar 
Fawcett, K. A. et al. Exome-wide analysis of copy number variation shows association of the human leukocyte antigen region with asthma in UK Biobank. BMC Med. Genomics 15, 119 (2022).Article 

Google Scholar 
Liu, J. et al. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum. Genet. 137, 553–567 (2018).Article 

Google Scholar 
Wineinger, N. E., Pajewski, N. M. & Tiwari, H. K. A method to assess linkage disequilibrium between CNVs and SNPs inside copy number variable regions. Front. Genet. 2, 17 (2011).Article 

Google Scholar 
Estivill, X. & Armengol, L. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet. 3, 1787–1799 (2007).Article 

Google Scholar 
Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 19, 21 (2018).Article 

Google Scholar 
Hayhurst, J. et al. A community driven GWAS summary statistics standard. Preprint at bioRxiv https://doi.org/10.1101/2022.07.15.500230 (2022).Magno, R. & Maia, A. T. gwasrapidd: an R package to query, download and wrangle GWAS catalog data. Bioinformatics 36, 649–650 (2020).Article 

Google Scholar 
Cao, T., Li, A. & Huang, Y. pandasGWAS: a Python package for easy retrieval of GWAS catalog data. BMC Genomics 24, 238 (2023).Article 

Google Scholar 
Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.244293 (2020).Costanzo, M. C. et al. Cardiovascular disease knowledge portal: a community resource for cardiovascular disease research. Circ. Genom. Precis. Med. 16, e004181 (2023).Article 

Google Scholar 
Lambert, S. A. et al. The polygenic score catalog: new functionality and tools to enable FAIR research. Preprint at medRxiv https://doi.org/10.1101/2024.05.29.24307783 (2024).Chen, Y. et al. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak. Nat. Commun. 14, 283 (2023).Article 

Google Scholar 
Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02024-y (2024).Article 

Google Scholar 
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).Article 

Google Scholar 
Dierckxsens, N., Li, T., Vermeesch, J. R. & Xie, Z. A benchmark of structural variation detection by long reads through a realistic simulated model. Genome Biol. 22, 342 (2021).Article 

Google Scholar 
Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).Article 

Google Scholar 
Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30 (2020).Article 

Google Scholar 
De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).Article 

Google Scholar 
Gustafson, J. A. et al. Nanopore sequencing of 1000 genomes project samples to build a comprehensive catalog of human genetic variation. Preprint at medRxiv https://doi.org/10.1101/2024.03.05.24303792 (2024).Schloissnig, S. et al. Long-read sequencing and structural variant characterization in 1,019 samples from the 1000 genomes project. Preprint at bioRxiv https://doi.org/10.1101/2024.04.18.590093 (2024).Groza, C. et al. Pangenome graphs improve the analysis of structural variants in rare genetic diseases. Nat. Commun. 15, 657 (2024).Article 

Google Scholar 
Ebler, J. et al. Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. Nat. Genet. 54, 518–525 (2022).Article 

Google Scholar 
Noyvert, B. et al. Imputation of structural variants using a multi-ancestry long-read sequencing panel enables identification of disease associations. Preprint at bioRxiv https://doi.org/10.1101/2023.12.20.23300308 (2023).Lambert, S. A. et al. The polygenic score catalog as an open database for reproducibility and systematic evaluation. Nat. Genet. 53, 420–425 (2021).Article 

Google Scholar 
Xiang, R. et al. Recent advances in polygenic scores: translation, equitability, methods and FAIR tools. Genome Med. 16, 33 (2024).Article 

Google Scholar 
Hao, L. et al. Development of a clinical polygenic risk score assay and reporting workflow. Nat. Med. 28, 1006–1013 (2022).Article 

Google Scholar 
Lennon, N. J. et al. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat. Med. 30, 480–487 (2024).Article 

Google Scholar 
Bergen et al. Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia. Am. J. Psychiatry 176, 29–35 (2019).Article 

Google Scholar 
Taniguchi, S. et al. Polygenic risk scores in schizophrenia with clinically significant copy number variants. Psychiatry Clin. Neurosci. 74, 35–39 (2020).Article 

Google Scholar 
Mollon, J. et al. Impact of copy number variants and polygenic risk scores on psychopathology in the UK biobank. Biol. Psychiatry 94, 591–600 (2023).Article 

Google Scholar 
Alexander-Bloch, A. et al. Copy number variant risk scores associated with cognition, psychopathology, and brain structure in youths in the philadelphia neurodevelopmental cohort. JAMA Psychiatry 79, 699–709 (2022).Article 

Google Scholar 
Saarentaus, E. C. et al. Polygenic burden has broader impact on health, cognition, and socioeconomic outcomes than most rare and high-risk copy number variants. Mol. Psychiatry 26, 4884–4895 (2021).Article 

Google Scholar 
Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).Article 

Google Scholar 
Hu, S. et al. Leveraging fine-scale population structure reveals conservation in genetic effect sizes between human populations across a range of human phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2023.08.08.552281 (2023).Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).Article 

Google Scholar 
Heyne, H. O. et al. Mono- and biallelic variant effects on disease at biobank scale. Nature 613, 519–525 (2023).Article 

Google Scholar 
Song, P. et al. Data resource profile: understanding the patterns and determinants of health in South Asians-the South Asia biobank. Int. J. Epidemiol. 50, 717–718e (2021).Article 

Google Scholar 
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article 

Google Scholar 
Loh, P. R. et al. Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 48, 1443–1448 (2016).Article 

Google Scholar 
Delaneau, O., Zagury, J. F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).Article 

Google Scholar 
Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat. Genet. 55, 1243–1249 (2023).Article 

Google Scholar 
Browning, B. L. & Browning, S. R. Statistical phasing of 150,119 sequenced genomes in the UK Biobank. Am. J. Hum. Genet. 110, 161–165 (2023).Article 

Google Scholar 
Lassen, F. H. et al. Exome-wide evidence of compound heterozygous effects across common phenotypes in the UK Biobank. Preprint at medRxiv https://doi.org/10.1101/2023.06.29.23291992 (2023).Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).Article 

Google Scholar 
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).Article 

Google Scholar 
Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).Article 

Google Scholar 
Namba, S. et al. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genom. 2, 100190 (2022).Article 

Google Scholar 
Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).Article 

Google Scholar 
Arruda, A. L., Morris, A. P. & Zeggini, E. Advancing equity in human genomics through tissue-specific multi-ancestry molecular data. Cell Genom. 4, 100485 (2024).Article 

Google Scholar 

Hot Topics

Related Articles