Haplotype-resolved and near-T2T genome assembly of the African catfish (Clarias gariepinus)

Bevan, D. J. & Kramer, D. L. The respiratory behaviour of an air-breathing catfish, clarias macrocephalus (clariidae). Canadian journal of zoology 65, 348–353 (1987).Article 

Google Scholar 
Haymer, D. S. & Khedkar, G. D. Biology of selected clarias catfish species used in aquaculture. Israeli Journal of Aquaculture-Bamidgeh 74, 1–15 (2022).Article 

Google Scholar 
Yatuha, J., Kang’ombe, J. & Chapman, L. Diet and feeding habits of the small catfish, c larias liocephalus in wetlands of w estern u ganda. African Journal of Ecology 51, 385–392 (2013).Article 

Google Scholar 
FishBase Consortium. FishBase. https://www.fishbase.se/search.php (2024). Accessed: 2024-08-30.Skelton, P. H. & Teugels, G. G. A review of the clariid catfishes (siluroidei, clariidae) occurring in southern africa (1991).Clols-Fuentes, J., Nguinkal, J. A., Unger, P., Kreikemeyer, B. & Palm, H. W. Bacterial community in African catfish (Clarias gariepinus) recirculating aquaculture systems under different stocking densities. Frontiers in Marine Science 10, 1073250 (2023).Article 

Google Scholar 
Ducarme, C. & Micha, J.-C. Technique de production intensive du poisson chat africain, clarias gariepinus. Tropicultura 21, 189–198 (2003).
Google Scholar 
Dai, W., Wang, X., Guo, Y., Wang, Q. & Ma, J. Growth performance, hematological and biochemical responses of African catfish (clarias gariepinus) reared at different stocking densities. African Journal of Agricultural Research 6, 6177–6182 (2011).
Google Scholar 
Sayed, A., Abdel-Tawab, H. S., Hakeem, S. S. A. & Mekkawy, I. A. The protective role of quince leaf extract against the adverse impacts of ultraviolet-a radiation on some tissues of clarias gariepinus (Burchell, 1822). Journal of Photochemistry and Photobiology B: Biology 119, 9–14 (2013).Article 

Google Scholar 
Weyl, O., Daga, V., Ellender, B. & Vitule, J. A review of clarias gariepinus invasions in Brazil and south africa. Journal of fish biology 89, 386–402 (2016).Article 

Google Scholar 
Rahman, M. A. et al. Inter-specific hybridization and its potential for the aquaculture of fin fishes. Asian Journal of Animal and veterinary Advances 8, 139–153 (2013).Article 

Google Scholar 
Armelin, V. A. et al. The baroreflex in aquatic and amphibious teleosts: Does terrestriality represent a significant driving force for the evolution of a more effective baroreflex in vertebrates? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 255, 110916 (2021).Article 

Google Scholar 
Belão, T., Leite, C., Florindo, L., Kalinin, A. & Rantin, F. Cardiorespiratory responses to hypoxia in the African catfish, clarias gariepinus (Burchell 1822), an air-breathing fish. Journal of Comparative Physiology B 181, 905–916 (2011).Article 

Google Scholar 
Alimba, C. G. & Bakare, A. A. In vivo micronucleus test in the assessment of cytogenotoxicity of landfill leachates in three animal models from various ecological habitats. Ecotoxicology 25, 310–319 (2016).Article 

Google Scholar 
Tiogué, C. T., Nyadjeu, P., Mouokeu, S. R., Tekou, G. & Tchoupou, H. Evaluation of hybridization in two African catfishes (Siluriformes, clariidae): Exotic (clarias gariepinus Burchell, 1822) and native (clarias jaensis Boulenger, 1909) species under controlled hatchery conditions in cameroon. Advances in Agriculture 2020, 1–11 (2020).Article 

Google Scholar 
Kánainé Sipos, D. et al. Development and characterization of 49 novel microsatellite markers in the African catfish, clarias gariepinus (Burchell, 1822). Molecular Biology Reports 46, 6599–6608 (2019).Article 

Google Scholar 
Li, Z., Wang, X., Chen, C., Gao, J. & Lv, A. Transcriptome profiles in the spleen of African catfish (clarias gariepinus) challenged with Aeromonas veronii. Fish & Shellfish Immunology 86, 858–867 (2019).Article 

Google Scholar 
Nguyen, D. H. M. et al. An investigation of zz/zw and xx/xy sex determination systems in north African catfish (clarias gariepinus). Frontiers in Genetics 11, 562856 (2021).Article 

Google Scholar 
Nguyen, D. H. M. et al. Genome-wide snp analysis of hybrid clariid fish reflects the existence of polygenic sex-determination in the lineage. Frontiers in Genetics 13, 80 (2022).Article 

Google Scholar 
Barasa, J. et al. High genetic diversity and population differentiation in clarias gariepinus of Yala Swamp: evidence from mitochondrial DNA sequences. Journal of fish biology 89, 2557–2570 (2016).Article 

Google Scholar 
Maneechot, N. et al. Genomic organization of repetitive dnas highlights chromosomal evolution in the genus clarias (clariidae, siluriformes). Molecular Cytogenetics 9, 1–10 (2016).Article 

Google Scholar 
Liu, S. & Yao, Z. Self-fertilization of hermaphrodites of the teleost clarias lazerea after oral administration of 17-α-methyltestosterone and their offspring. Journal of Experimental Zoology 273, 527–532 (1995).Article 

Google Scholar 
Liu, S., Yao, Z. & Wang, Y. Sex hormone induction of sex reversal in the teleost clarias lazera and evidence for female homogamety and male heterogamety. Journal of Experimental Zoology 276, 432–438 (1996).Article 

Google Scholar 
Eding, E., Bouwmans, A. & Komen, J. Evidence for a xx/xy sex determining mechanism in the African catfish clarias gariepinus. In Presentation at the Sixth International Symposium on Genetics in Aquaculture (Stirling Scotland, UK, 1997).Kovács, B., Egedi, S., Bártfai, R. & Orbán, L. Male-specific DNA markers from African catfish (clarias gariepinus). Genetica 110, 267–276 (2000).Article 

Google Scholar 
Ozouf-Costaz, C., Teugels, G. & Legendre, M. Karyological analysis of three strains of the African catfish, clarias gariepinus (clariidae), used in aquaculture. Aquaculture 87, 271–277 (1990).Article 

Google Scholar 
Teugels, G. G. The nomenclature of African clarias species used in aquaculture. Aquaculture 38, 373–374 (1984).Article 

Google Scholar 
Teugels, G., Ozouf-costz, C., Legendre, M. & Parrent, M. A karyological analysis of the artificial hybridization between clarias gariepinus (Burchell, 1822) and heterobranchus longifilis valenciennes, 1840 (pisces; clariidae). Journal of fish biology 40, 81–86 (1992).Article 

Google Scholar 
Li, N. et al. Genome sequence of walking catfish (clarias batrachus) provides insights into terrestrial adaptation. BMC genomics 19, 1–16 (2018).Article 

Google Scholar 
Kushwaha, B. et al. The genome of walking catfish clarias magur (Hamilton, 1822) unveils the genetic basis that may have facilitated the development of environmental and terrestrial adaptation systems in air-breathing catfishes. DNA Research 28, dsaa031 (2021).Article 

Google Scholar 
Low, W. Y. et al. Haplotype-resolved genomes provide insights into structural variation and gene content in angus and brahman cattle. Nature Communications 11, 1–14 (2020).Article 
ADS 

Google Scholar 
Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nature biotechnology 39, 309–312 (2021).Article 

Google Scholar 
Xue, L. et al. Telomere-to-telomere assembly of a fish y chromosome reveals the origin of a young sex chromosome pair. Genome biology 22, 1–20 (2021).Article 

Google Scholar 
Deng, Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provides important resources for gene discovery and breeding. Molecular plant 15, 1268–1284 (2022).Article 

Google Scholar 
Tian, H.-F., Hu, Q., Lu, H.-Y. & Li, Z. Chromosome-scale, haplotype-resolved genome assembly of non-sex-reversal females of swamp eel using high-fidelity long reads and hi-c data. Frontiers in Genetics 13, 903185 (2022).Article 

Google Scholar 
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).Article 
ADS 

Google Scholar 
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature methods 18, 170–175 (2021).Article 
ADS 

Google Scholar 
Zhang, X., Wu, R., Wang, Y., Yu, J. & Tang, H. Unzipping haplotypes in diploid and polyploid genomes. Computational and structural biotechnology journal 18, 66–72 (2020).Article 

Google Scholar 
Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. J. Kat: a k-mer analysis toolkit to quality control ngs datasets and genome assemblies. Bioinformatics 33, 574–576 (2017).Article 

Google Scholar 
Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).Article 

Google Scholar 
Ghurye, J. et al. Integrating hi-c links with assembly graphs for chromosome-scale assembly. PLoS computational biology 15, e1007273 (2019).Article 

Google Scholar 
Patterson, M. et al. Whatshap: weighted haplotype assembly for future-generation sequencing reads. Journal of Computational Biology 22, 498–509 (2015).Article 

Google Scholar 
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with kraken 2. Genome biology 20, 1–13 (2019).Article 

Google Scholar 
Xu, G.-C. et al. Lr_gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. Gigascience 8, giy157 (2019).Article 

Google Scholar 
Aury, Jean-Marc & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics and Bioinformatics 3, lqab034, https://doi.org/10.1093/nargab/lqab034 (2021).Article 

Google Scholar 
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome biology 21, 1–27 (2020).Article 

Google Scholar 
Flynn, J. M. et al. Repeatmodeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences 117, 9451–9457 (2020).Article 
ADS 

Google Scholar 
Crescente, J. M., Zavallo, D., Helguera, M. & Vanzetti, L. S. Mite tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinformatics 19, 348 (2018).Article 

Google Scholar 
Gremme, G., Steinbiss, S. & Kurtz, S. Genometools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM transactions on computational biology and bioinformatics 10, 645–656 (2013).Article 

Google Scholar 
Ou, S. & Jiang, N. Ltr_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant physiology 176, 1410–1422 (2018).Article 

Google Scholar 
Shao, F., Wang, J., Xu, H. & Peng, Z. Fishtedb: a collective database of transposable elements identified in the complete genomes of fish. Database2018 (2018).Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. Cd-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).Article 

Google Scholar 
Smit, A. & Green, P. RepeatMasker. http://www.repeatmasker.org (2022). Accessed: 2022-05-20.Li, H. Protein-to-genome alignment with miniprot. Bioinformatics 39, btad014 (2023).Article 

Google Scholar 
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nature biotechnology 37, 907–915 (2019).Article 

Google Scholar 
Shumate, A., Wong, B., Pertea, G. & Pertea, M. Improved transcriptome assembly using a hybrid of long and short reads with stringtie. PLOS Computational Biology 18, e1009730 (2022).Article 
ADS 

Google Scholar 
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–439 (2006).Article 

Google Scholar 
Bruna, T., Lomsadze, A. & Borodovsky, M. Genemark-ep+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR genomics and bioinformatics 2, lqaa026 (2020).Article 

Google Scholar 
Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).Article 

Google Scholar 
Majoros, W. H., Pertea, M. & Salzberg, S. L. Tigrscan and glimmerhmm: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).Article 

Google Scholar 
Palmer, J. Funannotate. https://github.com/nextgenusfs/funannotate Accessed: 2022-07-20 (2022).Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–57 (2016).Article 

Google Scholar 
Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).Article 
ADS 

Google Scholar 
Friedlander, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).Article 

Google Scholar 
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–144 (2006).Article 

Google Scholar 
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggnog-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular biology and evolution 38, 5825–5829 (2021).Article 

Google Scholar 
Blum, M. et al. The interpro protein families and domains database: 20 years on. Nucleic acids research 49, D344–D354 (2021).Article 

Google Scholar 
Hai, D. M. et al. A high-quality genome assembly of striped catfish (pangasianodon hypophthalmus) based on highly accurate long-read hifi sequencing data. Genes 13, 923 (2022).Article 

Google Scholar 
Kim, O. T. et al. A draft genome of the striped catfish, pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement. BMC genomics 19, 1–16 (2018).Article 

Google Scholar 
Shao, F. et al. Chromosome-level genome assembly of the asian red-tail catfish (hemibagrus wyckioides). Frontiers in genetics 12, 747684 (2021).Article 

Google Scholar 
NCBI Sequence Read Archive. NCBI Sequence Read Archive. https://identifiers.org/ncbi/insdc.sra:SRP365618 (2024).NCBI GenBank. Whole Genome Assembly – Primary Assembly. https://identifiers.org/ncbi/insdc.gca:GCA_024256425.2 (2024).NCBI GenBank. Whole Genome Assembly – Haplotype-1. https://identifiers.org/ncbi/insdc.gca:GCA_024256435.1 (2024).NCBI GenBank. Whole Genome Assembly – Haplotype-2. https://identifiers.org/ncbi/insdc.gca:GCA_024256465.1 (2024).Nguinkal, J. A., Zoclanclounon, A. B. Y., Brunner, R. M., Goldammer, T. & Chen, Y. Haplotype-resolved and near-T2T assembly of the African catfish (Clarias gariepinus). https://doi.org/10.5281/zenodo.11486725 (2024).Brown, M. A Telomere Identification toolKit. https://github.com/tolkit/telomeric-identifier (2022). Accessed: 2022-08-20.Sánchez-Guillén, R. et al. On the origin of robertsonian fusions in nature: evidence of telomere shortening in wild house mice. Journal of evolutionary biology 28, 241–249 (2015).Article 

Google Scholar 
Lund, T. C., Glass, T. J., Tolar, J. & Blazar, B. R. Expression of telomerase and telomere length are unaffected by either age or limb regeneration in danio rerio. PLoS One 4, e7688 (2009).Article 
ADS 

Google Scholar 
Downs, K. P. et al. Characterization of telomeres and telomerase expression in xiphophorus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155, 89–94 (2012).
Google Scholar 
Ocalewicz, K. Telomeres in fishes. Cytogenetic and genome research 141, 114–125 (2013).Article 

Google Scholar 

Hot Topics

Related Articles