Profiling muscle transcriptome in mice exposed to microgravity using gene set enrichment analysis

Witze, A. The $93-billion plan to put astronauts back on the Moon. Nature 605, 212–216 (2022).Article 
CAS 
PubMed 

Google Scholar 
WHO. Autism. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders (accessed on 06/05/2022).Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 1162–1184 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Winick, E. 20 Breakthroughs from 20 Years of Science aboard the International Space Station. Available online: https://www.nasa.gov/mission_pages/station/research/news/iss-20-years-20-breakthroughs (accessed on 17/10/2022).NASA. NASA Spinoff. Available online: https://spinoff.nasa.gov/Spinoff2019/pdf/Spinoff508_2019.pdf (accessed on 10/10/2022).Vico, L. & Hargens, A. Skeletal changes during and after spaceflight. Nat. Rev. Rheumatol. 14, 229–245 (2018).Article 
PubMed 

Google Scholar 
Van Ombergen, A. et al. The effect of spaceflight and microgravity on the human brain. J. Neurol. 264, 18–22 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Shen, M. & Frishman, W. H. Effects of Spaceflight on Cardiovascular Physiology and Health. Cardiol. Rev. 27, 122–126 (2019).Article 
PubMed 

Google Scholar 
Laurens, C. et al. Revisiting the Role of Exercise Countermeasure on the Regulation of Energy Balance During Space Flight. Front Physiol. 10, 321 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, L. F. & Hargens, A. R. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiol. Rev. 98, 59–87 (2018).Article 
PubMed 

Google Scholar 
Garrett-Bakelman, F. E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 364, https://doi.org/10.1126/science.aau8650 (2019).Platts, S. H. et al. Effects of sex and gender on adaptation to space: cardiovascular alterations. J. Women’s Health (Larchmt.) 23, 950–955 (2014).Article 

Google Scholar 
Kennedy, A. R. et al. Effects of sex and gender on adaptation to space: immune system. J. Women’s Health (Larchmt.) 23, 956–958 (2014).Article 

Google Scholar 
Reschke, M. F. et al. Effects of sex and gender on adaptation to space: neurosensory systems. J. Women’s Health (Larchmt.) 23, 959–962 (2014).Article 

Google Scholar 
Ploutz-Snyder, L. et al. Effects of sex and gender on adaptation to space: musculoskeletal health. J. Women’s Health (Larchmt.) 23, 963–966 (2014).Article 

Google Scholar 
Ronca, A. E. et al. Effects of sex and gender on adaptations to space: reproductive health. J. Women’s Health (Larchmt.) 23, 967–974 (2014).Article 

Google Scholar 
Goel, N. et al. Effects of sex and gender on adaptation to space: behavioral health. J. Women’s Health (Larchmt.) 23, 975–986 (2014).Article 

Google Scholar 
Akima, H. et al. Effect of short-duration spaceflight on thigh and leg muscle volume. Med Sci. Sports Exerc 32, 1743–1747 (2000).Article 
CAS 
PubMed 

Google Scholar 
Gomez, X. et al. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 7, 35 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, R. & Chilibeck, P. D. Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems. Nutr. Res. 82, 11–24 (2020).Article 
CAS 
PubMed 

Google Scholar 
Schneider, S. M., Lee, S. M., Macias, B. R., Watenpaugh, D. E. & Hargens, A. R. WISE-2005: exercise and nutrition countermeasures for upright VO2pk during bed rest. Med Sci. Sports Exerc. 41, 2165–2176 (2009).Article 
PubMed 

Google Scholar 
Demontis, G. C. et al. Human Pathophysiological Adaptations to the Space Environment. Front. Physiol. 8, 547 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, Y. et al. Cancer cachexia: molecular mechanism and pharmacological management. Biochem. J. 478, 1663–1688 (2021).Article 
CAS 
PubMed 

Google Scholar 
Otzel, D. M., Kok, H. J., Graham, Z. A., Barton, E. R. & Yarrow, J. F. Pharmacologic approaches to prevent skeletal muscle atrophy after spinal cord injury. Curr. Opin. Pharm. 60, 193–199 (2021).Article 
CAS 

Google Scholar 
Powers, S. K., Lynch, G. S., Murphy, K. T., Reid, M. B. & Zijdewind, I. Disease-Induced Skeletal Muscle Atrophy and Fatigue. Med Sci. Sports Exerc. 48, 2307–2319 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Suetta, C. et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS One 7, e51238 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ronca, A. E. et al. Behavior of mice aboard the International Space Station. Sci. Rep. 9, 4717 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Ray, S. et al. GeneLab: Omics database for spaceflight experiments. Bioinformatics 35, 1753–1759 (2019).Article 
CAS 
PubMed 

Google Scholar 
da Silveira, W. A. et al. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 183, 1185–1201.e1120 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Vitry, G. et al. Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in mice. iScience 25, 105213 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sartori, R., Romanello, V. & Sandri, M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat. Commun. 12, 330 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maret, W. & Krezel, A. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol. Med 13, 371–375 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Summermatter, S. et al. Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength. Mol. Cell Biol. 37, https://doi.org/10.1128/MCB.00305-16 (2017).Baig, M. H. et al. NeuroMuscleDB: a Database of Genes Associated with Muscle Development, Neuromuscular Diseases, Ageing, and Neurodegeneration. Mol. Neurobiol. 56, 5835–5843 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 470 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Malatras, A., Duguez, S. & Duddy, W. Muscle Gene Sets: a versatile methodological aid to functional genomics in the neuromuscular field. Skelet. Muscle 9, 10 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Benarroch, L., Bonne, G., Rivier, F. & Hamroun, D. The 2023 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul. Disord. 33, 76–117 (2023).Article 
PubMed 

Google Scholar 
Raza, S. H. A. et al. Screening and Identification of Muscle-Specific Candidate Genes via Mouse Microarray Data Analysis. Front Vet. Sci. 8, 794628 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Jang, S. M., Kim, C. H., Kim, J. W. & Choi, K. H. Transcriptional regulatory network of SOX4 during myoblast differentiation. Biochem. Biophys. Res Commun. 462, 365–370 (2015).Article 
CAS 
PubMed 

Google Scholar 
Murray, J., Ehsani, A., Najjar, L., Zhang, G. & Itakura, K. Muscle-specific deletion of Arid5b causes metabolic changes in skeletal muscle that affect adipose tissue and liver. Front. Endocrinol. (Lausanne) 13, 1083311 (2022).Article 
PubMed 

Google Scholar 
Gao, S. et al. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Mol. Metab. 4, 310–324 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Herbst, R. MuSk function during health and disease. Neurosci. Lett. 716, 134676 (2020).Article 
CAS 
PubMed 

Google Scholar 
Amack, J. D., Reagan, S. R. & Mahadevan, M. S. Mutant DMPK 3’-UTR transcripts disrupt C2C12 myogenic differentiation by compromising MyoD. J. Cell Biol. 159, 419–429 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harfmann, B. D., Schroder, E. A. & Esser, K. A. Circadian rhythms, the molecular clock, and skeletal muscle. J. Biol. Rhythms 30, 84–94 (2015).Article 
CAS 
PubMed 

Google Scholar 
Fujita, S. I., Rutter, L., Ong, Q. & Muratani, M. Integrated RNA-seq Analysis Indicates Asynchrony in Clock Genes between Tissues under Spaceflight. Life (Basel) 10, https://doi.org/10.3390/life10090196 (202).Nakao, R. et al. Atypical expression of circadian clock genes in denervated mouse skeletal muscle. Chronobiol. Int 32, 486–496 (2015).Article 
CAS 
PubMed 

Google Scholar 
Lambert, M. et al. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys. Acta 1860, 2017–2030 (2016).Article 
CAS 
PubMed 

Google Scholar 
Bonanni, R., Cariati, I., Marini, M., Tarantino, U., & Tancredi, V. Microgravity and Musculoskeletal Health: What Strategies Should Be Used for a Great Challenge? Life (Basel) 13, https://doi.org/10.3390/life13071423 (2023).Juhl, O. J. T. et al. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 7, 28 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Dapp, C., Schmutz, S., Hoppeler, H. & Fluck, M. Transcriptional reprogramming and ultrastructure during atrophy and recovery of mouse soleus muscle. Physiol. Genomics 20, 97–107 (2004).Article 
PubMed 

Google Scholar 
Berrios, D. C., Galazka, J., Grigorev, K., Gebre, S. & Costes, S. V. NASA GeneLab: interfaces for the exploration of space omics data. Nucleic Acids Res. 49, D1515–D1522 (2021).Article 
PubMed 

Google Scholar 
Manian, V., Orozco-Sandoval, J. & Diaz-Martinez, V. An Integrative Network Science and Artificial Intelligence Drug Repurposing Approach for Muscle Atrophy in Spaceflight Microgravity. Front Cell Dev. Biol. 9, 732370 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Pontes, B., Giraldez, R. & Aguilar-Ruiz, J. S. Biclustering on expression data: A review. J. Biomed. Inf. 57, 163–180 (2015).Article 

Google Scholar 
Comfort, N. et al. Longitudinal transcriptomic analysis of mouse sciatic nerve reveals pathways associated with age-related muscle pathology. J. Cachexia Sarcopenia Muscle 14, 1322–1336 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Lazure, F. et al. Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Rep. 21, e49499 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moretti, I. et al. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat. Commun. 7, 12397 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fitts, R. H., Riley, D. R. & Widrick, J. J. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J. Appl Physiol. (1985) 89, 823–839 (2000).Article 
CAS 
PubMed 

Google Scholar 
Freeze, H. H., Eklund, E. A., Ng, B. G. & Patterson, M. C. Neurological aspects of human glycosylation disorders. Annu Rev. Neurosci. 38, 105–125 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ahn, H. R. et al. HMBS is the most suitable reference gene for RT-qPCR in human HCC tissues and blood samples. Oncol. Lett. 22, 791 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vesentini, N. et al. L’Abbate, A. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression. BMC Res Notes 5, 124 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bardou, P., Mariette, J., Escudie, F., Djemiel, C. & Klopp, C. jvenn: an interactive Venn diagram viewer. BMC Bioinforma. 15, 293 (2014).Article 

Google Scholar 
Ge, X. iDEP Web Application for RNA-Seq Data Analysis. Methods Mol. Biol. 2284, 417–443 (2021).Article 
CAS 
PubMed 

Google Scholar 
Rose, T. D. et al. MoSBi: Automated signature mining for molecular stratification and subtyping. Proc. Natl Acad. Sci. USA 119, e2118210119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oommen, A. M. et al. GlycoGAIT: A web database to browse glycogenes and lectins under gastric inflammatory diseases. J. Theor. Biol. 406, 93–98 (2016).Article 
CAS 
PubMed 

Google Scholar 
Taillandier, D. & Polge, C. Skeletal muscle atrogenes: From rodent models to human pathologies. Biochimie 166, 251–269 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bult, C. J., Blake, J. A., Smith, C. L., Kadin, J. A. & Richardson, J. E. Mouse Genome Database, G. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 47, D801–D806 (2019).Article 
CAS 
PubMed 

Google Scholar 
Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).Article 
CAS 
PubMed 

Google Scholar 
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717 (2011).Article 
CAS 
PubMed 

Google Scholar 
Bindea, G., Galon, J. & Mlecnik, B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29, 661–663 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles