A deep-learning model for characterizing tumor heterogeneity using patient-derived organoids

Hanahan, D. & Weinberg, R. Hallmarks of cancer: The next generation. Cell144(5), 646–674 (2011).Article 
CAS 
PubMed 

Google Scholar 
Fouad, Y. & Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res.7(5), 1016–1036 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
Burrell, R., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature501, 338–345 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Flavahan, W., Gaskell, E. & Bernstein, B. Epigenetic plasticity and the hallmarks of cancer. Science357, 6348 (2017).Article 

Google Scholar 
Yuan, Y. Spatial heterogeneity in the tumor microenvironment. Cold Spring Harb. Perspect. Med.6, a026583 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Marusyk, A. & Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta1805(1), 105 (2010).CAS 
PubMed 

Google Scholar 
Gerlinger, M., Rowan, A., Horswell, S., Larkin, J. & Endesfelder, D. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366(10), 883–892 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer?. Nat. Rev. Cancer12, 323–334 (2012).Article 
CAS 
PubMed 

Google Scholar 
Swanton, C. Intratumour heterogeneity: Evolution through space and time. Cancer Res.72(19), 4875–4882 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell27, 15–26 (2015).Article 
CAS 
PubMed 

Google Scholar 
Dagogo-Jack, I. & Shaw, A. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol.15, 81–94 (2018).Article 
CAS 
PubMed 

Google Scholar 
Collins, F. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med.372, 793–795 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Greaves, M. & Maley, C. Clonal evolution in cancer. Nature481, 306–313 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ritchie, M., Holzinger, E., Li, R., Pendergrass, S. & Kim, D. Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet.16, 85–97 (2015).Article 
CAS 
PubMed 

Google Scholar 
Aronson, S. & Rehm, H. Building the foundation for genomics in precision medicine. Nature526, 336–342 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Young, A., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of genotype-phenotype associations in humans. Science365(6460), 1396–1400 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kamat, M., Blackshaw, J., Young, R., Surendran, P. & Burgess, S. Phenoscanner v2: An expanded tool for searching human genotype-phenotype associations. Bioinformatics35(22), 4851–4853 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, H. & Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl Cancer Inst.92, 1472–1489 (2000).Article 
CAS 
PubMed 

Google Scholar 
Hamidi, H. & Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer18, 533–548 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schmid, M., Khan, S., Kaneda, P., Pathria, M. M. & Shepard, R. Integrin cd11b activation drives anti-tumor innate immunity. Nat. Commun.9, 5379 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Song, Q., Hawkins, G., Wudel, L., Chou, P.-C. & Forbes, E. Dissecting intratumoral myeloid cell plasticity by single cell RNA?. Seq. Cancer Med.8, 3072–3085 (2019).Article 
CAS 
PubMed 

Google Scholar 
Morad, G., Helmink, B., Sharma, P. & Wargo, J. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell184, 5309–5337 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schaafsma, E., Fugle, C., Wang, X. & Cheng, C. Pan-cancer association of hla gene expression with cancer prognosis and immunotherapy efficacy. Br. J. Cancer125, 422–32 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Clevers, H. Modeling development and disease with organoids. Cell7(16), 1586–1597 (2016).Article 

Google Scholar 
Fatehullah, A., Tan, S. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol.18, 246–254 (2016).Article 
PubMed 

Google Scholar 
Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer18, 407–418 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J.38, e100300 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Larsen, B. et al. A pan-cancer organoid platform for precision medicine. Cell Rep.36, 109429 (2021).Article 
CAS 
PubMed 

Google Scholar 
Higa, A. et al. Evaluation system for arrhythmogenic potential of drugs using human-induced pluripotent stem cell-derived cardiomyocytes and gene expression analysis. J. Toxicol. Sci.42, 755–761 (2017).Article 
CAS 
PubMed 

Google Scholar 
Tamura, H. et al. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues. Oncol. Rep.40, 635–646 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
Takahashi, N. et al. An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells8, 4812019 (2019).Article 

Google Scholar 
Takahashi, N. et al. Construction of in vitro patient?derived tumor models to evaluate anticancer agents and cancer immunotherapy. Oncol. Lett.21(5), 1792–1074 (2021).Article 

Google Scholar 
Higa, A. et al. High-throughput in vitro assay using patient-derived tumor organoids. J. Vis. Exp.14, 172 (2021).
Google Scholar 
Rios, A. & Clevers, H. Imaging organoids: A bright future ahead. Nat. Methods15, 24–26 (2018).Article 
CAS 
PubMed 

Google Scholar 
Borten, M., Bajikar, S., Sasaki, N., Clevers, H. & Janes, K. Automated brightfield morphometry of 3d organoid populations by organoseg. Nat. Methods15, 23 (2018).
Google Scholar 
Karolak, A., Poonja, S. & Rejniak, K. Morphophenotypic classification of tumor organoids as an indicator of drug exposure and penetration potential. PLoS Comput. Biol.15(7), e1007214 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matthews, J. et al. Organoid: A versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLoS Comput. Biol.18(11), e1010584 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.46, 389–422 (2002).Article 

Google Scholar 
Sawyers, C. The cancer biomarker problem. Nature452, 548–552 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature521(7553), 436–44 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Hinton, G. & Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science313(5786), 504–507 (2006).Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar 
Hinton, S., Osindero, G. & Teh, Y. A fast learning algorithm for deep belief nets. Neural Computat.18(7), 1527–1554 (2006).Article 
MathSciNet 

Google Scholar 
Shorten, C. & Khoshgoftaar, T. A survey on image data augmentation for deep learning. J. Big Data6, 60 (2019).Article 

Google Scholar 
Chandrashekar, G. & Sahin, F. A survey on feature selection methods. Comput. Electr. Eng.40(1), 16–28 (2014).Article 

Google Scholar 
Kraus, O., Ba, J. & Frey, B. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics32(12), i52–i59 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kassis, T., Hernandez-Gordillo, V., Langer, R. & Griffith, L. Orgaquant: Human intestinal organoid localization and quantification using deep convolutional neural network. Sci. Rep.9, 12479 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Chaudhary, K., Poirion, O., Lu, L. & Garmire, L. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res.24(6), 1248–59 (2018).Article 
CAS 
PubMed 

Google Scholar 
Li, Y., Wu, F. & Ngom, A. A review on machine learning principles for multi-view biological data integration. Brief. Bioinform.19(2), 325–340 (2018).PubMed 

Google Scholar 
Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today23(6), 1241–1250 (2018).Article 
PubMed 

Google Scholar 
Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med.25, 24–29 (2019).Article 
CAS 
PubMed 

Google Scholar 
Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet.47, 320–329 (2015).Article 
CAS 
PubMed 

Google Scholar 
Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov.18(6), 463–477 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chang, Y. et al. Cancer drug response profile scan (cdrscan): A deep learning model that predicts drug effectiveness from cancer genomic signature. Sci. Rep.8, 8857 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles