Length-scale study in deep learning prediction for non-small cell lung cancer brain metastasis

Janowczyk, A. & Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inform.7, 29. https://doi.org/10.4103/2153-3539.186902 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Baxi, V., Edwards, R., Montalto, M. & Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol.35, 23–32. https://doi.org/10.1038/s41379-021-00919-2 (2022).Article 
CAS 
PubMed 

Google Scholar 
Shen, C. et al. Automatic detection of circulating tumor cells and cancer associated fibroblasts using deep learning. Sci. Rep.13, 5708. https://doi.org/10.1038/s41598-023-32955-0 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Falk, T. et al. U-Net: Deep learning for cell counting, detection, and morphometry. Nat. Methods16, 67–70. https://doi.org/10.1038/s41592-018-0261-2 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhou, H. et al. Ai-guided histopathology predicts brain metastasis in lung cancer patients. J. Pathol.263, 89–98. https://doi.org/10.1002/path.6263 (2024).Article 
CAS 
PubMed 

Google Scholar 
Lu, M. Y. et al. A visual-language foundation model for computational pathology. Nat. Med.30, 863–874 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wiegrebe, S., Kopper, P., Sonabend, R., Bischl, B. & Bender, A. Deep learning for survival analysis: A review. Artif. Intell. Rev.57, 65 (2024).Article 

Google Scholar 
Mohamed, E., Sirlantzis, K. & Howells, G. A review of visualisation-as-explanation techniques for convolutional neural networks and their evaluation. Displays73, 102239. https://doi.org/10.1016/j.displa.2022.102239 (2022).Article 

Google Scholar 
Teng, Q., Liu, Z., Song, Y., Han, K. & Lu, Y. A survey on the interpretability of deep learning in medical diagnosis. Multimedia Syst.28, 2335–2355. https://doi.org/10.1007/s00530-022-00960-4 (2022).Article 

Google Scholar 
Singh, A., Sengupta, S. & Lakshminarayanan, V. Explainable deep learning models in medical image analysis. J. Imaging6, 52. https://doi.org/10.3390/jimaging6060052 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Salahuddin, Z., Woodruff, H. C., Chatterjee, A. & Lambin, P. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Comput. Biol. Med.140, 105111. https://doi.org/10.1016/j.compbiomed.2021.105111 (2022).Article 
PubMed 

Google Scholar 
Simonyan, K., Vedaldi, A. & Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv[SPACE]https://doi.org/10.48550/ARXIV.1312.6034 (2013). Publisher: arXiv Version Number: 2.Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV), 618–626, https://doi.org/10.1109/ICCV.2017.74 (IEEE, Venice, 2017).Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv[SPACE]https://doi.org/10.48550/ARXIV.1412.6806 (2014). Publisher: [object Object] Version Number: 3.Chen, H., Lundberg, S. M. & Lee, S.-I. Explaining a series of models by propagating Shapley values. Nat. Commun.13, 4512. https://doi.org/10.1038/s41467-022-31384-3 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeiler, M. D. & Fergus, R. Visualizing and Understanding Convolutional Networks. In Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T. (eds.) Computer Vision – ECCV 2014, vol. 8689, 818–833, https://doi.org/10.1007/978-3-319-10590-1_53 (Springer International Publishing, Cham, 2014). Series Title: Lecture Notes in Computer Science.Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv[SPACE]https://doi.org/10.48550/ARXIV.1412.6572 (2014). Publisher: arXiv Version Number: 3.Zhang, Q., Wu, Y. N. & Zhu, S.-C. Interpretable convolutional neural networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8827–8836, https://doi.org/10.1109/CVPR.2018.00920 (IEEE, Salt Lake City, UT, 2018).Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding Neural Networks Through Deep Visualization. arXiv[SPACE]https://doi.org/10.48550/ARXIV.1506.06579 (2015). Publisher: arXiv Version Number: 1.Zhou, B., Bau, D., Oliva, A. & Torralba, A. Interpreting deep visual representations via network dissection. IEEE Trans. Pattern Anal. Mach. Intell.41, 2131–2145. https://doi.org/10.1109/TPAMI.2018.2858759 (2019).Article 
PubMed 

Google Scholar 
Koh, P. W. et al. Concept bottleneck models. In International Conference on Machine Learning, 5338–5348 (PMLR, 2020).Dai, Y., Wang, G. & Li, K.-C. Conceptual alignment deep neural networks. J. Intell. Fuzzy Syst.34, 1631–1642. https://doi.org/10.3233/JIFS-169457 (2018).Article 

Google Scholar 
Shen, S., Han, S. X., Aberle, D. R., Bui, A. A. & Hsu, W. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst. Appl.128, 84–95. https://doi.org/10.1016/j.eswa.2019.01.048 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, O., Liu, H., Chen, C. & Rudin, C. Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions. Proc. of the AAAI Conference on Artificial Intelligence32, https://doi.org/10.1609/aaai.v32i1.11771 (2018).Chen, C. et al. This Looks Like That: Deep Learning for Interpretable Image Recognition. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems, vol. 32 (Curran Associates, Inc., 2019).Cao, Q. H., Nguyen, T. T. H., Nguyen, V. T. K. & Nguyen, X. P. A Novel Explainable Artificial Intelligence Model in Image Classification problem. arXiv[SPACE]https://doi.org/10.48550/ARXIV.2307.04137 (2023). Publisher: arXiv Version Number: 1.Van Der Velden, B. H., Kuijf, H. J., Gilhuijs, K. G. & Viergever, M. A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal.79, 102470. https://doi.org/10.1016/j.media.2022.102470 (2022).Article 
PubMed 

Google Scholar 
Atakishiyev, S., Salameh, M., Yao, H. & Goebel, R. Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions (2021). ArXiv:2112.11561 [cs].Zhuo, X., Nandi, I., Azzaoui, T. & Son, S. W. A neural network-based optimal tile size selection model for embedded vision applications. In 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 607–612, https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00077 (2020).Liu, S., Cui, Y., Jiang, Q., Wang, Q. & Wu, W. An efficient tile size selection model based on machine learning. J. Parallel Distrib. Comput.121, 27–41. https://doi.org/10.1016/j.jpdc.2018.06.005 (2018).Article 

Google Scholar 
Sabottke, C. F. & Spieler, B. M. The effect of image resolution on deep learning in radiography. Radiol. Artif. Intell.2, e190015. https://doi.org/10.1148/ryai.2019190015 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, A. L. S., To, C. C. K., Lee, A. L. H., Li, J. J. X. & Chan, R. C. K. Model architecture and tile size selection for convolutional neural network training for non-small cell lung cancer detection on whole slide images. Inform. Med. Unlocked28, 100850. https://doi.org/10.1016/j.imu.2022.100850 (2022).Article 

Google Scholar 
Ganti, A. K., Klein, A. B., Cotarla, I., Seal, B. & Chou, E. Update of incidence, prevalence, survival, and initial treatment in patients with non-small cell lung cancer in the US. JAMA Oncol.7, 1824. https://doi.org/10.1001/jamaoncol.2021.4932 (2021).Article 
PubMed 

Google Scholar 
Waqar, S. N., Morgensztern, D. & Govindan, R. Systemic treatment of brain metastases. Hematol. Oncol. Clin. North Am.31, 157–176. https://doi.org/10.1016/j.hoc.2016.08.007 (2017).Article 
PubMed 

Google Scholar 
Tsui, D. C. C., Camidge, D. R. & Rusthoven, C. G. Managing Central nervous system spread of lung cancer: The state of the art. J. Clin. Oncol.40, 642–660. https://doi.org/10.1200/JCO.21.01715 (2022).Article 
PubMed 

Google Scholar 
Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern.9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076 (1979).Article 

Google Scholar 
Vahadane, A. et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging35, 1962–1971. https://doi.org/10.1109/TMI.2016.2529665 (2016).Article 
PubMed 

Google Scholar 
He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. arXiv[SPACE]https://doi.org/10.48550/ARXIV.1512.03385 (2015). Publisher: arXiv Version Number: 1.Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. J. Big Data6, 27. https://doi.org/10.1186/s40537-019-0192-5 (2019).Article 

Google Scholar 
Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A. & Togneri, R. Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learning Syst.29, 3573–3587. https://doi.org/10.1109/TNNLS.2017.2732482 (2018).Article 

Google Scholar 
Wang, H. et al. Predicting hospital readmission via cost-sensitive deep learning. IEEE/ACM Trans. Comput. Biol. Bioinf.15, 1968–1978. https://doi.org/10.1109/TCBB.2018.2827029 (2018).Article 

Google Scholar 
Nemoto, K., Hamaguchi, R., Imaizumi, T. & Hikosaka, S. Classification of rare building change using cnn with multi-class focal loss. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 4663–4666, https://doi.org/10.1109/IGARSS.2018.8517563 (2018).Zhang, C., Tan, K. C. & Ren, R. Training cost-sensitive deep belief networks on imbalance data problems. In 2016 International Joint Conference on Neural Networks (IJCNN), 4362–4367, https://doi.org/10.1109/IJCNN.2016.7727769 (2016).Zhang, Y., Shuai, L., Ren, Y. & Chen, H. Image classification with category centers in class imbalance situation. In 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), 359–363, https://doi.org/10.1109/YAC.2018.8406400 (2018).Whittaker, E. T. On the functions which are represented by the expansions of the interpolation-theory. Proc. R. Soc. Edinb.35, 181–194. https://doi.org/10.1017/S0370164600017806 (1915).Article 

Google Scholar 
Visonà, G. et al. Machine-learning-aided prediction of brain metastases development in non-small-cell lung cancers. Clin. Lung Cancer24, e311–e322. https://doi.org/10.1016/j.cllc.2023.08.002 (2023).Article 
PubMed 

Google Scholar 
Wang, Q. et al. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med.12, 11149–11165 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
De Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell41, 374–403 (2023).Article 
PubMed 

Google Scholar 
Jiang, S. et al. High-throughput digital pathology via a handheld, multiplexed, and AI-powered ptychographic whole slide scanner. Lab Chip22, 2657–2670. https://doi.org/10.1039/D2LC00084A (2022).Article 
CAS 
PubMed 

Google Scholar 
Guo, C. et al. Deep learning-enabled whole slide imaging (deepwsi): Oil-immersion quality using dry objectives, longer depth of field, higher system throughput, and better functionality. Opt. Express29, 39669–39684. https://doi.org/10.1364/OE.441892 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics7, 739–745. https://doi.org/10.1038/nphoton.2013.187 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zheng, G., Shen, C., Jiang, S., Song, P. & Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys.3, 207–223. https://doi.org/10.1038/s42254-021-00280-y (2021).Article 

Google Scholar 
Chung, J., Lu, H., Ou, X., Zhou, H. & Yang, C. Wide-field Fourier ptychographic microscopy using laser illumination source. Biomed. Opt. Express7, 4787. https://doi.org/10.1364/BOE.7.004787 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, H. et al. Fourier ptychographic microscopy image stack reconstruction using implicit neural representations. Optica10, 1679–1687. https://doi.org/10.1364/OPTICA.505283 (2023).Article 
ADS 

Google Scholar 
Ratnayake, G. M. et al. What causes desmoplastic reaction in small intestinal neuroendocrine neoplasms?. Curr. Oncol. Rep.24, 1281–1286. https://doi.org/10.1007/s11912-022-01211-5 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Walker, R. A. The complexities of breast cancer desmoplasia. Breast Cancer Res.3, 143. https://doi.org/10.1186/bcr287 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martins, C. A. C., Dâmaso, S., Casimiro, S. & Costa, L. Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev.39, 603–623. https://doi.org/10.1007/s10555-020-09888-5 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles