Toward subtask-decomposition-based learning and benchmarking for predicting genetic perturbation outcomes and beyond

Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).Article 
MATH 

Google Scholar 
Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 8 (2022).Article 
MATH 

Google Scholar 
Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).Article 
MATH 

Google Scholar 
Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).Article 

Google Scholar 
Cheng, J. et al. Massively parallel CRISPR‐based genetic perturbation screening at single‐cell resolution. Adv. Sci. 10, 2204484 (2023).Article 

Google Scholar 
Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).Article 
MATH 

Google Scholar 
Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016).Article 
MATH 

Google Scholar 
Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2024).Lotfollahi, M. et al. Predicting cellular responses to complex perturbations in high‐throughput screens. Mol. Syst. Biol. 19, e11517 (2023).Article 

Google Scholar 
Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).Article 
MATH 

Google Scholar 
Gavriilidis, G. I., Vasileiou, V., Orfanou, A., Ishaque, N. & Psomopoulos, F. A mini-review on perturbation modelling across single-cell omic modalities. Comput. Struct. Biotechnol. J. 23, 1886–1896 (2024).Article 

Google Scholar 
Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).Article 

Google Scholar 
Dong, M. et al. Causal identification of single-cell experimental perturbation effects with CINEMA-OT. Nat. Methods 20, 1769–1779 (2023).Article 
MATH 

Google Scholar 
Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat. Biotechnol. 39, 619–629 (2021).Article 
MATH 

Google Scholar 
Duan, B. et al. Model-based understanding of single-cell CRISPR screening. Nat. Commun. 10, 2233 (2019).Article 
MATH 

Google Scholar 
Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 53, 322–331 (2021).Article 

Google Scholar 
Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).Article 
MATH 

Google Scholar 
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).Article 
MATH 

Google Scholar 
Hetzel, L., Boehm, S., Kilbertus, N., Günnemann, S. & Theis, F. Predicting cellular responses to novel drug perturbations at a single-cell resolution. Adv. Neural Inf. Process. Syst. 35, 26711–26722 (2022).
Google Scholar 
Inecik, K., Uhlmann, A., Lotfollahi, M. & Theis, F. MultiCPA: multimodal compositional perturbation autoencoder. Preprint at bioRxiv https://doi.org/10.1101/2022.07.08.499049 (2022).Yang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852–866 (2022).Article 
MATH 

Google Scholar 
Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).Cui, H. et al. scGPT: towards building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).Ma, J. et al. Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. Nat. Cancer 2, 233–244 (2021).Article 
MATH 

Google Scholar 
Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 35, 24824–24837 (2022).
Google Scholar 
Chang, O., Flokas, L., Lipson, H. & Spranger, M. Assessing SATNet’s ability to solve the symbol grounding problem. Adv. Neural Inf. Process. Syst. 33, 1428–1439 (2020).
Google Scholar 
Replogle, J. M. et al. Mapping information-rich genotype–phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).Article 
MATH 

Google Scholar 
Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229.e26 (2023).Article 
MATH 

Google Scholar 
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article 
MATH 

Google Scholar 
Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).Article 
MATH 

Google Scholar 
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).Article 
MATH 

Google Scholar 
Barry, T., Wang, X., Morris, J. A., Roeder, K. & Katsevich, E. SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis. Genome Biol. 22, 344 (2021).Article 

Google Scholar 
Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).Article 

Google Scholar 
Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).Article 

Google Scholar 
Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).Article 

Google Scholar 
Gao, Y. et al. Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition. Nat. Mach. Intell. 5, 236–249 (2023).Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5149–5169 (2021).MATH 

Google Scholar 
Wang, W., Zheng, V. W., Yu, H. & Miao, C. A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. 10, 13 (2019).Article 
MATH 

Google Scholar 
Wang, Y., Yao, Q., Kwok, J. T. & Ni, L. M. Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53, 63 (2020).MATH 

Google Scholar 
Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).Article 
MATH 

Google Scholar 
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene Ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).Article 
MATH 

Google Scholar 
Moon, J. W. et al. IFNγ induces PD-L1 overexpression by JAK2/STAT1/IRF-1 signaling in EBV-positive gastric carcinoma. Sci. Rep. 7, 17810 (2017).Article 

Google Scholar 
Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).Article 
MATH 

Google Scholar 
De Ville, B. Decision trees. Wiley Interdiscip. Rev. Comput. Stat. 5, 448–455 (2013).Article 
MATH 

Google Scholar 
Bunne, C. et al. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 20, 1759–1768 (2023).Article 
MATH 

Google Scholar 
Yu, H. & Welch, J. D. PerturbNet predicts single-cell responses to unseen chemical and genetic perturbations. Preprint at bioRxiv https://doi.org/10.1101/2022.07.20.500854 (2022).Piran, Z., Cohen, N., Hoshen, Y. & Nitzan, M. Disentanglement of single-cell data with biolord. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02079-x (2024).Song, B. et al. Decoding heterogenous single-cell perturbation responses. Preprint at bioRxiv https://doi.org/10.1101/2023.10.30.564796 (2023).Kana, O. et al. Generative modeling of single-cell gene expression for dose-dependent chemical perturbations. Patterns 4, 100817 (2023).Article 
MATH 

Google Scholar 
Tang, X. et al. Explainable multi-task learning for multi-modality biological data analysis. Nat. Commun. 14, 2546 (2023).Article 
MATH 

Google Scholar 
Ribeiro, M. T., Singh, S. & Guestrin, C. “Why should I trust you?”: explaining the predictions of any classifier. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1135–1144 (Association for Computing Machinery, 2016).Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Proc. Syst. 30, 6785–6795 (2017).MATH 

Google Scholar 
Gao, Y. et al. STAMP: toward subtask decomposition-based learning and benchmarking for genetic perturbation outcome prediction and beyond (v0.1.2). Zenodo https://doi.org/10.5281/zenodo.12779567 (2024).

Hot Topics

Related Articles