Improving both activity and stability for direct conversion of cellulose to ethanol by decorating Pt/WOx with mononuclear NbOx

Chemocatalytic conversion of cellulose to ethanol provides an alternative route for biofuel production with a theoretical carbon yield of 100%; however, it faces significant challenges of high catalyst cost and poor catalyst stability. In this work, we report a new strategy to decrease the use of expensive noble metals, by decorating mononuclear NbOx on a low-Pt Pt/WOx catalyst surface. The resulting 0.1Nb/0.5Pt/WOx catalyst gave rise to an ethanol yield of 33.7% together with an ethylene glycol yield of 21.8%, and the noble metal efficiency reached 25.90 gethanol gPt−1 h−1, an increase by a factor of 2–10 compared to those in the literature. Moreover, the catalyst stability was significantly enhanced by the decoration of mononuclear NbOx, allowing for recycling at least 7 times without obvious activity decay. Characterization revealed that Pt was highly dispersed at subnanometer and single atom scales, and modification with mononuclear NbOx facilitated hydrogen spillover and created more oxygen vacancies on the WOx surface upon hydrogen reduction, thus generating a higher density of Brønsted acid sites. This effect not only favored cellulose conversion to ethylene glycol but also promoted the hydrogenolysis of ethylene glycol to ethanol.


This article is Open Access



Please wait while we load your content…


Something went wrong. Try again?

Hot Topics

Related Articles