Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol

Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).Article 

Google Scholar 
Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).Article 

Google Scholar 
De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).Article 

Google Scholar 
Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).Article 

Google Scholar 
Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).Article 

Google Scholar 
An, H. et al. Sub-second time-resolved surface enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).Article 

Google Scholar 
Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).Article 

Google Scholar 
Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).Article 

Google Scholar 
Hori, Y., Murata, A. & Yoshinami, Y. Adsorption of CO, intermediately formed in electrochemical reduction of CO2, at a copper electrode. J. Chem. Soc. Faraday Trans. 87, 125–128 (1991).Article 

Google Scholar 
Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. Chem. Phys. Chem. 18, 3266–3273 (2017).Article 

Google Scholar 
Hori, Y., Koga, O., Yamazaki, H. & Matsuo, T. Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode. Electrochim. Acta 40, 2617–2622 (1995).Article 

Google Scholar 
Moradzaman, M. & Mul, G. In situ Raman study of potential-dependent surface adsorbed carbonate, CO, OH, and C species on Cu electrodes during electrochemical reduction of CO2. ChemElectroChem 8, 1478–1485 (2021).Article 

Google Scholar 
Zhan, C. et al. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 11, 7694–7701 (2021).Article 

Google Scholar 
Pérez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).Article 

Google Scholar 
Kim, Y. et al. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301 (2020).Article 

Google Scholar 
Schouten, K. J. P., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902 (2011).Article 

Google Scholar 
Reichert, A. M., Piqué, O., Parada, W. A., Katsounaros, I. & Calle-Vallejo, F. Mechanistic insight into electrocatalytic glyoxal reduction on copper and its relation to CO2 reduction. Chem. Sci. 13, 11205–11214 (2022).Article 

Google Scholar 
Delmo, E. P. et al. The role of glyoxal as an intermediate in the electrochemical CO2 reduction reaction on copper. J. Phys. Chem. C 127, 4496–4510 (2023).Article 

Google Scholar 
da Silva, A. H. M., Lenne, Q., Vos, R. E. & Koper, M. T. M. Competition of CO and acetaldehyde adsorption and reduction on copper electrodes and its impact on n-propanol formation. ACS Catal. 13, 4339–4347 (2023).Article 

Google Scholar 
Li, J. et al. Intercepting elusive intermediates in Cu-mediated CO electrochemical reduction with alkyl species. J. Am. Chem. Soc. 144, 20495–20506 (2022).Article 

Google Scholar 
Heenen, H. H. et al. Mechanism for acetate formation in electrochemical CO(2) reduction on Cu: selectivity with potential, pH, and nanostructuring Hendrik. Energy Environ. Sci. 15, 3978–3990 (2022).Article 

Google Scholar 
Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).Article 

Google Scholar 
Auer, A. et al. Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. Nat. Catal. 3, 797–803 (2020).Article 

Google Scholar 
Scholten, F., Nguyen, K.-L. C., Bruce, J. P., Heyde, M. & Roldan Cuenya, B. Identifying structure-selectivity correlations in the electrochemical reduction of CO2: comparison of well-ordered atomically-clean and chemically-etched Cu single crystal surfaces. Angew. Chem. Int. Ed. 60, 19169–19175 (2021).Article 

Google Scholar 
Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020).Article 

Google Scholar 
Liu, G. et al. CO2 reduction on pure Cu produces only H2 after subsurface O is depleted: theory and experiment. Proc. Natl Acad. Sci. USA 118, e2012649118 (2021).Article 

Google Scholar 
Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).Article 

Google Scholar 
Gao, D. et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal. 8, 10012–10020 (2018).Article 

Google Scholar 
Ruiter De, J. et al. Probing the dynamics of low-overpotential CO2‑to-CO activation on copper electrodes with time-resolved Raman spectroscopy. J. Am. Chem. Soc. 144, 15047–15058 (2022).Article 

Google Scholar 
Zhao, Y. et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 142, 9735–9743 (2020).
Google Scholar 
Brown, G. M. & Hope, G. A. A SERS study of SO2–4Cl− ion adsorption at a copper electrode in situ. J. Electroanal. Chem. 405, 211–216 (1996).Article 

Google Scholar 
Niaura, G. & Malinauskas, A. Surface-enhanced Raman scattering from chloride on copper electrodes. Chem. Phys. Lett. 207, 455–460 (1993).Article 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).Article 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 

Google Scholar 
Dattila, F., García-Muelas, R. & López, N. Active and selective ensembles in oxide-derived copper catalysts for CO2 reduction. ACS Energy Lett. 5, 3176–3184 (2020).Article 

Google Scholar 
Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).Article 

Google Scholar 
Ma, W. et al. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50, 12897–12914 (2021).Article 

Google Scholar 
Hollins, P., Davies, K. J. & Pritchard, J. Infrared spectra of CO chemisorbed on a surface vicinal to Cu(110): the influence of defect sites. Surf. Sci. 138, 75–83 (1984).Article 

Google Scholar 
Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).Article 

Google Scholar 
Amirbeigiarab, R. et al. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 6, 837–846 (2023).Article 

Google Scholar 
Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).Article 

Google Scholar 
Sebastián-Pascual, P. & Escudero-Escribano, M. Surface characterization of copper electrocatalysts by lead underpotential deposition. J. Electroanal. Chem. 896, 115446 (2021).Article 

Google Scholar 
Bai, H. et al. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci. Bull. 66, 62–68 (2021).Article 

Google Scholar 
Jeon, H. S. et al. Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. J. Am. Chem. Soc. 143, 7578–7587 (2021).Article 

Google Scholar 
Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).Article 

Google Scholar 
Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).Article 

Google Scholar 
Calle-Vallejo, F., Martínez, J. I., García-Lastra, J. M., Sautet, P. & Loffreda, D. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53, 8316–8319 (2014).Article 

Google Scholar 
Peng, H.-J., Tang, M. T., Halldin Stenlid, J., Liu, X. & Abild-Pedersen, F. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products. Nat. Commun. 13, 1399 (2022).Article 

Google Scholar 
Hou, J., Chang, X., Li, J., Xu, B. & Lu, Q. Correlating CO coverage and CO electroreduction on Cu via high-pressure in situ spectroscopic and reactivity investigations. J. Am. Chem. Soc. 144, 22202–22211 (2022).Article 

Google Scholar 
Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).Article 

Google Scholar 
Ding, L. et al. Over 70% Faradaic efficiency for CO2 electroreduction to ethanol enabled by potassium dopant-tuned interaction between copper sites and intermediates. Angew. Chem. Int. Ed. 61, e202209268 (2022).Article 

Google Scholar 
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).Article 

Google Scholar 
Bucko, T. et al. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010).Article 

Google Scholar 
López, N. et al. State-of-the-art and challenges in theoretical simulations of heterogeneous catalysis at the microscopic level. Catal. Sci. Technol. 2, 2405–2417 (2012).Article 

Google Scholar 
Fishman, M., Zhuang, H. L., Mathew, K., Dirschka, W. & Hennig, R. G. Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87, 245402 (2013).Article 

Google Scholar 
Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).Article 

Google Scholar 
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).Article 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 

Google Scholar 
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).Article 
MathSciNet 

Google Scholar 
Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).Article 

Google Scholar 
Dattila, F. Raman-C2. ioChem-BD https://doi.org/10.19061/iochem-bd-1-251 (2024).Pablo-García, S. et al. Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022).Article 

Google Scholar 

Hot Topics

Related Articles