Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue

Fischer, R. C. & Power, P. P. Pi-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).Article 
CAS 
PubMed 

Google Scholar 
Power, P. P. An update on multiple bonding between heavier main group elements: the importance of Pauli repulsion, charge-shift character, and London dispersion force effects. Organometallics 39, 4127–4138 (2020).Article 
CAS 

Google Scholar 
Brook, A. G., Abdesaken, F., Gutekunst, B., Gutekunst, G. & Kallury, R. K. A solid silaethene: isolation and characterization. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39810000191 (1981).West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a stable compound containing a silicon–silicon double bond. Science 214, 1343–1344 (1981).Article 
CAS 
PubMed 

Google Scholar 
Yoshifuji, M., Shima, I., Inamoto, N., Hirotsu, K. & Higuchi, T. Synthesis and structure of bis(2,4,6-tri-tert-butylphenyl)diphosphene: isolation of a true phosphobenzene. J. Am. Chem. Soc. 103, 4587–4589 (1981).Article 
CAS 

Google Scholar 
Weetman, C. Main group multiple bonds for bond activations and catalysis. Chem. Eur. J. 27, 1941–1954 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sekiguchi, A., Kinjo, R. & Ichinohe, M. A stable compound containing a silicon–silicon triple bond. Science 305, 1755–1757 (2004).Article 
CAS 
PubMed 

Google Scholar 
Inoue, S. et al. An ylide-like phosphasilene and striking formation of a 4π-electron, resonance-stabilized 2,4-disila-1,3-diphosphacyclobutadiene. J. Am. Chem. Soc. 133, 2868–2871 (2011).Article 
CAS 
PubMed 

Google Scholar 
Piro, N. A., Figueroa, J. S., McKellar, J. T. & Cummins, C. C. Triple-bond reactivity of diphosphorus molecules. Science 313, 1276–1279 (2006).Article 
CAS 
PubMed 

Google Scholar 
Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).Article 
CAS 
PubMed 

Google Scholar 
Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).Article 
CAS 
PubMed 

Google Scholar 
Melen, R. L. Frontiers in molecular p-block chemistry: from structure to reactivity. Science 363, 479–484 (2019).Article 
CAS 
PubMed 

Google Scholar 
Nesterov, V., Baierl, R., Hanusch, F., Ferao, A. E. & Inoue, S. N-heterocyclic carbene-stabilized germanium and tin analogues of heavier nitriles: synthesis, reactivity, and catalytic application. J. Am. Chem. Soc. 141, 14576–14580 (2019).Article 
CAS 
PubMed 

Google Scholar 
Weith, W. Beziehungen zwischen aromatischen Senfölen und Cyanüren. Ber. Dtsch. Chem. Ges. 6, 210–214 (1873).Article 

Google Scholar 
Maloney, K. M. & Rabinovitch, B. S. in Organic Chemistry Vol. 20 (ed. Ugi, I.) 41–64 (Elsevier, 1971).Zhao, Y. & Cheng, X. Isomerization energies and surface electrostatic potential analyses on nitriles and isocyanides. J. Mol. Model. 27, 257 (2021).Article 
CAS 
PubMed 

Google Scholar 
Meier, M. & Rüchardt, C. The synthetic potential of the isocyanide–cyanide rearrangement. Chem. Ber. 120, 1–4 (1987).Article 
CAS 

Google Scholar 
Rüchardt, C. et al. The isocyanide–cyanide rearrangement; mechanism and preparative applications. Angew. Chem. Int. Ed. 30, 893–901 (1991).Article 

Google Scholar 
Alwedi, E. et al. Asmic isocyanide–nitrile isomerization–alkylations. Eur. J. Org. Chem. 2019, 4644–4648 (2019).Article 
CAS 

Google Scholar 
Kang, H.-Y., Nim Pae, A., Seo Cho, Y., Yeong Koh, H. & Young Chung, B. Isonitrile–nitrile rearrangement promoted by samarium(ii) iodide. Chem. Commun. https://doi.org/10.1039/A700570I (1997).Ballmann, G., Elsen, H. & Harder, S. Magnesium cyanide or isocyanide? Angew. Chem. Int. Ed. 58, 15736–15741 (2019).Article 
CAS 

Google Scholar 
Bither, T. A., Knoth, W. H., Lindsey, R. V., Jr & Sharkey, W. H. Trialkyl- and triaryl(iso)cyanosilanes1. J. Am. Chem. Soc. 80, 4151–4153 (1958).Booth, M. R. & Frankiss, S. G. The constitution, vibrational spectra and proton resonance spectra of trimethylsilyl cyanide and isocyanide. Spectrochim Acta Part A: Molecular Spectroscopy 26, 859–869 (1970).Article 
CAS 

Google Scholar 
Chizmeshya, A. V. G., Ritter, C. J., Groy, T. L., Tice, J. B. & Kouvetakis, J. Synthesis of molecular adducts of beryllium, boron, and gallium cyanides: theoretical and experimental correlations between solid-state and molecular analogues. Chem. Mater. 19, 5890–5901 (2007).Article 
CAS 

Google Scholar 
Finze, M., Bernhardt, E., Willner, H. & Lehmann, C. W. Cyano- and isocyanotris(trifluoromethyl)borates: syntheses, spectroscopic properties, and solid state structures of K[(CF3)3BCN] and K[(CF3)3BNC]. J. Am. Chem. Soc. 127, 10712–10722 (2005).Article 
CAS 
PubMed 

Google Scholar 
Sen, S. S. et al. Zwitterionic Si–C–Si–P and Si–P–Si–P four-membered rings with two-coordinate phosphorus atoms. Angew. Chem. Int. Ed. 50, 2322–2325 (2011).Article 
CAS 

Google Scholar 
Johnson, B. P., Almstätter, S., Dielmann, F., Bodensteiner, M. & Scheer, M. Synthesis and reactivity of low-valent group 14 element compounds. Z. Anorg. Allg. Chem. 636, 1275–1285 (2010).Article 
CAS 

Google Scholar 
Chen, C.-H. & Su, M.-D. Theoretical design of silicon–phosphorus triple bonds: a density functional study. Eur. J. Inorg. Chem. 2008, 1241–1247 (2008).Article 

Google Scholar 
Lai, C. H., Su, M. D. & Chu, S. Y. Effects of first-row substituents on silicon–phosphorus triple bonds. Inorg. Chem. 41, 1320–1322 (2002).Article 
CAS 
PubMed 

Google Scholar 
Lattanzi, V. et al. Bonding in the heavy analogue of hydrogen cyanide: the curious case of bridged HPSi. Angew. Chem. Int. Ed. 49, 5661–5664 (2010).Article 
CAS 

Google Scholar 
Devarajan, D. & Frenking, G. Are they linear, bent, or cyclic? Quantum chemical investigation of the heavier group 14 and group 15 homologues of HCN and HNC. Chem. Asian J. 7, 1296–1311 (2012).Article 
CAS 
PubMed 

Google Scholar 
Hu, Y.-H. & Su, M.-D. Substituent effect on relative stabilities of the phosphorus and tin multiple bonds. Chem. Phys. Lett. 378, 289–298 (2003).Article 
CAS 

Google Scholar 
Wu, Y. et al. Isolation of a heavier cyclobutadiene analogue: 2,4-digerma-1,3-diphosphacyclobutadiene. Organometallics 35, 1593–1596 (2016).Article 
CAS 

Google Scholar 
Yao, S., Xiong, Y., Szilvási, T., Grützmacher, H. & Driess, M. From a phosphaketenyl-functionalized germylene to 1,3-digerma-2,4-diphosphacyclobutadiene. Angew. Chem. Int. Ed. 55, 4781–4785 (2016).Article 
CAS 

Google Scholar 
Yao, S. et al. Facile access to NaOC≡As and its use as an arsenic source to form germylidenylarsinidene complexes. Angew. Chem. Int. Ed. 56, 7465–7469 (2017).Article 
CAS 

Google Scholar 
Geiß, D., Arz, M. I., Straßmann, M., Schnakenburg, G. & Filippou, A. C. Si=P double bonds: experimental and theoretical study of an NHC-stabilized phosphasilenylidene. Angew. Chem. Int. Ed. 54, 2739–2744 (2015).Article 

Google Scholar 
Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kundu, S. et al. An electrophilic carbene-anchored silylene–phosphinidene. Angew. Chem. Int. Ed. 56, 4219–4223 (2017).Article 
CAS 

Google Scholar 
Azhakar, R., Ghadwal, R. S., Roesky, H. W., Wolf, H. & Stalke, D. Facile access to the functionalized N-donor stabilized silylenes PhC(NtBu)2SiX (X = PPh2, NPh2, NCy2, NiPr2, NMe2, N(SiMe3)2, OtBu). Organometallics 31, 4588–4592 (2012).Article 
CAS 

Google Scholar 
Kundu, S. et al. Comparison of two phosphinidenes binding to silicon(IV)dichloride as well as to silylene. J. Am. Chem. Soc. 140, 9409–9412 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Szilvási, T., Yao, S. & Driess, M. A bis(silylene)-stabilized diphosphorus compound and its reactivity as a monophosphorus anion transfer reagent. Nat. Chem. 12, 801–807 (2020).Article 
CAS 
PubMed 

Google Scholar 
He, Y., Dai, C., Wang, D., Zhu, J. & Tan, G. Phosphine-stabilized germylidenylpnictinidenes as synthetic equivalents of heavier nitrile and isocyanide in cycloaddition reactions with alkynes. J. Am. Chem. Soc. 144, 5126–5135 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chen, H. et al. Synthesis and reactivity of N-heterocyclic carbene coordinated formal germanimidoyl-phosphinidenes. Inorg. Chem. 62, 20906–20912 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, J., Wang, X.-F., Hu, C. & Liu, L. L. Carbene-stabilized phosphagermylenylidene: a heavier analog of isonitrile. J. Am. Chem. Soc. 146, 14341–14348 (2024).Article 
CAS 
PubMed 

Google Scholar 
Wendel, D. et al. From Si(II) to Si(IV) and back: reversible intramolecular carbon–carbon bond activation by an acyclic iminosilylene. J. Am. Chem. Soc. 139, 8134–8137 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, L., Li, Y., Li, Z. & Kira, M. Isolable silylenes and their diverse reactivity. Coord. Chem. Rev. 457, 214413 (2022).Article 
CAS 

Google Scholar 
Fujimori, S. & Inoue, S. Small molecule activation by two-coordinate acyclic silylenes. Eur. J. Inorg. Chem. 2020, 3131–3142 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nesterov, V., Breit, N. C. & Inoue, S. Advances in phosphasilene chemistry. Chemistry 23, 12014–12039 (2017).Article 
CAS 
PubMed 

Google Scholar 
Pyykkö, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).Article 
PubMed 

Google Scholar 
Pyykkö, P. & Atsumi, M. Molecular double-bond covalent radii for elements Li–E112. Chem. Eur. J. 15, 12770–12779 (2009).Article 
PubMed 

Google Scholar 
Dhara, D. et al. Assembly of NHC-stabilized 2-hydrophosphasilenes from Si(iv) precursors: a Lewis acid–base complex. Dalton Trans. 45, 19290–19298 (2016).Article 
CAS 
PubMed 

Google Scholar 
Seitz, A. E. et al. Pnictogen–silicon analogues of benzene. J. Am. Chem. Soc. 138, 10433–10436 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Carbene-stabilized diphosphorus. J. Am. Chem. Soc. 130, 14970–14971 (2008).Article 
CAS 
PubMed 

Google Scholar 
Tondreau, A. M., Benkő, Z., Harmer, J. R. & Grützmacher, H. Sodium phosphaethynolate, Na(OCP), as a “P” transfer reagent for the synthesis of N-heterocyclic carbene supported P3 and PAsP radicals. Chem. Sci. 5, 1545–1554 (2014).Article 
CAS 

Google Scholar 
Liu, X. et al. Reactions of an isolable dialkylsilylene with carbon dioxide and related heterocumulenes. Organometallics 33, 5434–5439 (2014).Article 
CAS 

Google Scholar 
Zhu, H., Hanusch, F. & Inoue, S. Facile bond activation of small molecules by an acyclic imino(silyl)silylene. Isr. J. Chem. 63, e202300012 (2023).Article 
CAS 

Google Scholar 
Nandi, G. C. Advances in the synthesis and applications of three membered sila, sila-aza/-phospha/-oxa/-thia cyclopropanes. Eur. J. Org. Chem. 2021, 587–606 (2021).Article 
CAS 

Google Scholar 
Benedek, Z. & Szilvási, T. Can low-valent silicon compounds be better transition metal ligands than phosphines and NHCs? RSC Adv. 5, 5077–5086 (2015).Article 
CAS 

Google Scholar 
Zhu, H., Kostenko, A., Franz, D., Hanusch, F. & Inoue, S. Room temperature intermolecular dearomatization of arenes by an acyclic iminosilylene. J. Am. Chem. Soc. 145, 1011–1021 (2023).Article 
CAS 
PubMed 

Google Scholar 
Krudy, G. A. & Macomber, R. S. Phosphorus coupling in 13C and 1H NMR. J. Chem. Educ. 56, 109 (1979).Article 
CAS 

Google Scholar 
Bührmann, L., Albers, L., Beuße, M., Schmidtmann, M. & Müller, T. Aluminagerma[5]pyramidanes—formation and skeletal rearrangement. Angew. Chem. Int. Ed. 63, e202401467 (2024).Article 

Google Scholar 
Majhi, P. K., Zimmer, M., Morgenstern, B., Huch, V. & Scheschkewitz, D. Transition metal complexes of heavier vinylidenes: allylic coordination vs vinylidene–alkyne rearrangement at nickel. J. Am. Chem. Soc. 143, 13350–13357 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yokouchi, Y., Ishida, S. & Iwamoto, T. Facile skeletal rearrangement of polycyclic disilenes with bicyclo[1.1.1]pentasilanyl groups. Chem. Eur. J. 24, 11393–11401 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jana, A., Roesky, H. W., Schulzke, C. & Samuel, P. P. An efficient route for the synthesis of a tin(II) substituted carbodiimide from a diazo compound. Inorg. Chem. 49, 3461–3464 (2010).Article 
CAS 
PubMed 

Google Scholar 
Rit, A., Campos, J., Niu, H. & Aldridge, S. A stable heavier group 14 analogue of vinylidene. Nat. Chem. 8, 1022–1026 (2016).Article 
CAS 
PubMed 

Google Scholar 
Jana, A., Huch, V. & Scheschkewitz, D. NHC-stabilized silagermenylidene: a heavier analogue of vinylidene. Angew. Chem. Int. Ed. 52, 12179–12182 (2013).Article 
CAS 

Google Scholar 
Qiao, Z., Li, X., Chen, M., Cao, F. & Mo, Z. Double 1,2-carbon migration at mixed heavier Sn=Ge vinylidenes. Angew. Chem. Int. Ed. 63, e202401570 (2024).Article 
CAS 

Google Scholar 
Qiao, Z., Chen, M. & Mo, Z. A silylene-stabilized distannavinylidene with a highly labile substituent. Sci. China Chem. 66, 3555–3561 (2023).Article 
CAS 

Google Scholar 
Breit, N. C., Eisenhut, C. & Inoue, S. Phosphinosilylenes as a novel ligand system for heterobimetallic complexes. Chem. Commun. 52, 5523–5526 (2016).Article 
CAS 

Google Scholar 
Saurwein, A., Eisner, T., Inoue, S. & Rieger, B. Steric and electronic properties of phosphinimide-based silylenes—the influence of the phosphine moiety. Organometallics 41, 3679–3685 (2022).Article 
CAS 

Google Scholar 
Lutters, D., Severin, C., Schmidtmann, M. & Müller, T. Activation of 7-silanorbornadienes by N-heterocyclic carbenes: a selective way to N-heterocyclic-carbene-stabilized silylenes. J. Am. Chem. Soc. 138, 6061–6067 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dubek, G., Hanusch, F. & Inoue, S. NHC-stabilized silyl-substituted chlorosilylene. Inorg. Chem. 58, 15700–15704 (2019).Article 
PubMed 

Google Scholar 
Seyferth, D., Annarelli, D. C. & Vick, S. C. 1,1-Dimethyl-2, 3-bis (trimethylsilyl)-1-silirene, a stable silacyclopropene. J. Am. Chem. Soc. 98, 6382–6384 (1976).Article 
CAS 

Google Scholar 
Hansen, K. et al. A fragile zwitterionic phosphasilene as a transfer agent of the elusive parent phosphinidene (:PH). J. Am. Chem. Soc. 135, 11795–11798 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hintermann, L. Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts IPr·HCl, IMes·HCl and IXy·HCl. Beilstein J. Org. Chem. 3, 22 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Schmidt, P., Fietze, S., Schrenk, C. & Schnepf, A. Bulky phenyl modifications of the silanide ligand Si(SiMe3)(3)—synthesis and reactivity. Z. Anorg. Allg. Chem. 643, 1759–1765 (2017).Article 
CAS 

Google Scholar 
Varaprath, S. & Stutts, D. H. Utility of trichloroisocyanuric acid in the efficient chlorination of silicon hydrides. J. Organomet. Chem. 692, 1892–1897 (2007).Article 
CAS 

Google Scholar 
Muhr, M. et al. Enabling LIFDI-MS measurements of highly air sensitive organometallic compounds: a combined MS/glovebox technique. Dalton Trans. 50, 9031–9036 (2021).Article 
CAS 
PubMed 

Google Scholar 
APEX Suite of Crystallographic Software (Bruker AXS, 2021).SAINT, Version 8.40A (Bruker AXS, 2019).SADABS, Version 2016/2 (Bruker AXS, 2016).Hubschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Sheldrick, G. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 71, 3–8 (2015).Article 

Google Scholar 
Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 71, 3–8 (2015).Article 

Google Scholar 
Wilson, A. J. (ed.) International Tables for Crystallography Vol. C 500–502, 219–222, 193–199 (Kluwer Academic Publishers, 1992).Kratzert, D. & Krossing, I. Recent improvements in DSR. J. Appl. Crystallogr. 51, 928–934 (2018).Article 
CAS 

Google Scholar 
Macrae, C. F. et al. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008).Article 
CAS 

Google Scholar 
Spek, A. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C 71, 9–18 (2015).Article 
CAS 

Google Scholar 
Spek, A. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 65, 148–155 (2009).Article 
CAS 

Google Scholar 
Neese, F. Software update: the ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).Article 

Google Scholar 
Furness, J. W., Kaplan, A. D., Ning, J., Perdew, J. P. & Sun, J. Correction to “Accurate and numerically efficient r2SCAN meta-generalized gradient approximation”. J. Phys. Chem. Lett 11, 9248 (2020).Article 
CAS 
PubMed 

Google Scholar 
Furness, J. W., Kaplan, A. D., Ning, J., Perdew, J. P. & Sun, J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 11, 8208–8215 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kruse, H. & Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 136, 154101 (2012).Article 
PubMed 

Google Scholar 
Caldeweyher, E., Bannwarth, C. & Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 147, 034112 (2017).Article 
PubMed 

Google Scholar 
Caldeweyher, E. et al. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 150, 154122 (2019).Article 
PubMed 

Google Scholar 
Caldeweyher, E., Mewes, J.-M., Ehlert, S. & Grimme, S. Extension and evaluation of the D4 London-dispersion model for periodic systems. Phys. Chem. Chem. Phys. 22, 8499–8512 (2020).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S., Hansen, A., Ehlert, S. & Mewes, J.-M. r2SCAN-3c: a “Swiss army knife” composite electronic-structure method. J. Chem. Phys. 154, 064103 (2021).Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).Article 
CAS 
PubMed 

Google Scholar 
Mardirossian, N. & Head-Gordon, M. ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144, 214110 (2016).Article 
PubMed 

Google Scholar 
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).Article 
CAS 
PubMed 

Google Scholar 
Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).Article 
CAS 
PubMed 

Google Scholar 
Glendening, J. et al. NBO 7.0. E. D. (Theoretical Chemistry Institute, Univ. Wisconsin, 2018).Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles