The Aphasia Recovery Cohort, an open-source chronic stroke repository

Rocher, L., Hendrickx, J. M. & de Montjoye, Y.-A. Estimating the success of re-identifications in incomplete datasets using generative models. Nat. Commun. 10, 3069 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Fox, P. T., Parsons, L. M. & Lancaster, J. L. Beyond the single study: function/location metanalysis in cognitive neuroimaging. Curr. Opin. Neurobiol. 8, 178–187 (1998).Article 
CAS 
PubMed 

Google Scholar 
Neu, S. C., Crawford, K. L. & Toga, A. W. The image and data archive at the laboratory of neuro imaging. Front. Neuroinform. 17, 1173623 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Jack, C. R. Jr et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Peet, B. T., Spina, S., Mundada, N. & La Joie, R. Neuroimaging in Frontotemporal Dementia: Heterogeneity and Relationships with Underlying Neuropathology. Neurotherapeutics 18, 728–752 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Elam, J. S. et al. The Human Connectome Project: A retrospective. Neuroimage 244, 118543 (2021).Article 
CAS 
PubMed 

Google Scholar 
Katan, M. & Luft, A. Global Burden of Stroke. Semin. Neurol. 38, 208–211 (2018).Article 
PubMed 

Google Scholar 
Alberts, M. J. et al. Revised and updated recommendations for the establishment of primary stroke centers: a summary statement from the brain attack coalition. Stroke 42, 2651–2665 (2011).Article 
PubMed 

Google Scholar 
Rorden, C. & Karnath, H.-O. Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat. Rev. Neurosci. 5, 813–819 (2004).Article 
PubMed 

Google Scholar 
Wilmskoetter, J. et al. Mapping acute lesion locations to physiological swallow impairments after stroke. Neuroimage Clin 22, 101685 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Karnath, H.-O., Sperber, C. & Rorden, C. Mapping human brain lesions and their functional consequences. Neuroimage 165, 180–189 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yourganov, G., Fridriksson, J., Rorden, C., Gleichgerrcht, E. & Bonilha, L. Multivariate Connectome-Based Symptom Mapping in Post-Stroke Patients: Networks Supporting Language and Speech. J. Neurosci. 36, 6668–6679 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kristinsson, S. et al. Brain age predicts long-term recovery in post-stroke aphasia. Brain Commun 4, fcac252 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Markiewicz, C. J. et al. The OpenNeuro resource for sharing of neuroscience data. Elife 10 (2021).Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data 3, 160044 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Kennedy, D. N. et al. Everything Matters: The ReproNim Perspective on Reproducible Neuroimaging. Front. Neuroinform. 13, 1 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Hayashi, S. et al. brainlife.io: A decentralized and open source cloud platform to support neuroscience research. ArXiv (2023).Martin, D. et al. Enhancing Collaborative Neuroimaging Research: Introducing COINSTAC Vaults for Federated Analysis and Reproducibility. bioRxiv https://doi.org/10.1101/2023.05.08.539852 (2023).Renton, A. I. et al. Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging. Nat Methods 21, 804-808 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liew, S.-L. et al. A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Sci Data 9, 320 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Liew, S.-L. et al. The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain-behavior relationships after stroke. Hum. Brain Mapp. 43, 129–148 (2022).Article 
PubMed 

Google Scholar 
Chilamkurthy, S. et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392, 2388–2396 (2018).Article 
PubMed 

Google Scholar 
Hernandez Petzsche, M. R. et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Sci Data 9, 762 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Koç, U. et al. Artificial Intelligence in Healthcare Competition (TEKNOFEST-2021): Stroke Data Set. Eurasian J Med 54, 248–258 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Faria, A. V. Annotated Clinical MRIs and Linked Metadata of Patients with Acute Stroke, Baltimore, Maryland, 2009–2019. Inter-university Consortium for Political and Social Research [distributor] https://doi.org/10.3886/ICPSR38464.v5 (2022).Liu, C.-F. et al. Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke. Commun. Med. 1, 61 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Xiong, Y., Khlif, M. S., Egorova-Brumley, N., Brodtmann, A. & Stark, B. C. Neural correlates of verbal fluency revealed by longitudinal T1, T2 and FLAIR imaging in stroke. Neuroimage Clin 38, 103406 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Brodtmann, A. et al. Charting cognitive and volumetric trajectories after stroke: protocol for the Cognition And Neocortical Volume After Stroke (CANVAS) study. Int. J. Stroke 9, 824–828 (2014).Article 
PubMed 

Google Scholar 
Rannikmäe, K. et al. Accuracy of identifying incident stroke cases from linked health care data in UK Biobank. Neurology 95, e697–e707 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Seghier, M. L. et al. The PLORAS Database: A data repository for Predicting Language Outcome and Recovery After Stroke. Neuroimage 124, 1208–1212 (2016).Article 
PubMed 

Google Scholar 
Griffis, J. C., Metcalf, N. V., Corbetta, M. & Shulman, G. L. Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions. Neuroimage Clin 30, 102639 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Seghier, M. L., Ramsden, S., Lim, L., Leff, A. P. & Price, C. J. Gradual lesion expansion and brain shrinkage years after stroke. Stroke 45, 877–879 (2014).Article 
PubMed 

Google Scholar 
Busby, N. et al. Advanced Brain Age and Chronic Poststroke Aphasia Severity. Neurology 100, e1166–e1176 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kopal, J., Uddin, L. Q. & Bzdok, D. The end game: respecting major sources of population diversity. Nat. Methods 20, 1122–1128 (2023).Article 
CAS 
PubMed 

Google Scholar 
Rorden, C., Bonilha, L., Fridriksson, J., Bender, B. & Karnath, H.-O. Age-specific CT and MRI templates for spatial normalization. Neuroimage 61, 957–965 (2012).Article 
PubMed 

Google Scholar 
Bradford, L., Aboy, M. & Liddell, K. International transfers of health data between the EU and USA: a sector-specific approach for the USA to ensure an ‘adequate’ level of protection. J Law Biosci 7, lsaa055 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Tucker, K. et al. Protecting patient privacy when sharing patient-level data from clinical trials. BMC Med. Res. Methodol. 16(Suppl 1), 77 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Theyers, A. E. et al. Multisite Comparison of MRI Defacing Software Across Multiple Cohorts. Front. Psychiatry 12, 617997 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, C., Landman, B. A., Prince, J. L. & Carass, A. A reproducibility evaluation of the effects of MRI defacing on brain segmentation. medRxiv https://doi.org/10.1101/2023.05.15.23289995 (2023).Cali, R. J. et al. The Influence of Brain MRI Defacing Algorithms on Brain-Age Predictions via 3D Convolutional Neural Networks. bioRxiv https://doi.org/10.1101/2023.04.28.538724 (2023).Schwarz, C. G. et al. Changing the face of neuroimaging research: Comparing a new MRI de-facing technique with popular alternatives. Neuroimage 231, 117845 (2021).Article 
PubMed 

Google Scholar 
Kho, M. E., Duffett, M., Willison, D. J., Cook, D. J. & Brouwers, M. C. Written informed consent and selection bias in observational studies using medical records: systematic review. BMJ 338, b866 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Plis, S. M. et al. COINSTAC: A Privacy Enabled Model and Prototype for Leveraging and Processing Decentralized Brain Imaging Data. Front. Neurosci. 10, 365 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Pedersen, P. M., Jørgensen, H. S., Nakayama, H., Raaschou, H. O. & Olsen, T. S. Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol. 38, 659–666 (1995).Article 
CAS 
PubMed 

Google Scholar 
REhabilitation and recovery of peopLE with Aphasia after StrokE (RELEASE) Collaborators. Predictors of Poststroke Aphasia Recovery: A Systematic Review-Informed Individual Participant Data Meta-Analysis. Stroke 52, 1778–1787 (2021).Article 

Google Scholar 
Fridriksson, J. Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. J. Neurosci. 30, 11558–11564 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kristinsson, S. et al. Individualized response to semantic versus phonological aphasia therapies in stroke. Brain Commun 3, fcab174 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Johnson, L. et al. Functional Connectivity and Speech Entrainment Speech Entrainment Improves Connectivity Between Anterior and Posterior Cortical Speech Areas in Non-fluent Aphasia. Neurorehabil. Neural Repair 36, 164–174 (2022).Article 
PubMed 

Google Scholar 
Fridriksson, J. et al. Transcranial Direct Current Stimulation vs Sham Stimulation to Treat Aphasia After Stroke: A Randomized Clinical Trial. JAMA Neurol. 75, 1470–1476 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Kertesz, A. The Western Aphasia Battery: a systematic review of research and clinical applications. Aphasiology https://doi.org/10.1080/02687038.2020.1852002 (2022).Kertesz, A. The Western Aphasia Battery: Test Booklet. (1982).Kertesz, A. Western Aphasia Battery–Revised. https://doi.org/10.1037/t15168-000 (2006).Yourganov, G., Smith, K. G., Fridriksson, J. & Rorden, C. Predicting aphasia type from brain damage measured with structural MRI. Cortex 73, 203–215 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
McKinnon, E. T. et al. Structural plasticity of the ventral stream and aphasia recovery. Ann. Neurol. 82, 147–151 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Gleichgerrcht, E., Fridriksson, J., Rorden, C. & Bonilha, L. Connectome-based lesion-symptom mapping (CLSM): A novel approach to map neurological function. Neuroimage Clin 16, 461–467 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Yourganov, G., Fridriksson, J., Stark, B. & Rorden, C. Removal of artifacts from resting-state fMRI data in stroke. Neuroimage Clin 17, 297–305 (2018).Article 
PubMed 

Google Scholar 
Liu, C.-F. et al. Digital 3D Brain MRI Arterial Territories Atlas. Sci Data 10, 74 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Sperber, C. & Karnath, H.-O. Impact of correction factors in human brain lesion-behavior inference. Hum. Brain Mapp. 38, 1692–1701 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Johnson, L. et al. Predictors beyond the lesion: Health and demographic factors associated with aphasia severity. Cortex 154, 375–389 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Sperber, C., Gallucci, L., Mirman, D., Arnold, M. & Umarova, R. M. Stroke lesion size – Still a useful biomarker for stroke severity and outcome in times of high-dimensional models. Neuroimage Clin 40, 103511 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Gibson, M. et al. Aphasia Recovery Cohort (ARC) Dataset. OpenNeuro. https://doi.org/10.18112/openneuro.ds004884.v1.0.1 (2023).Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016).Article 
PubMed 

Google Scholar 
Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).Article 
PubMed 

Google Scholar 
Johnson, L. et al. Progression of Aphasia Severity in the Chronic Stages of Stroke. Am. J. Speech. Lang. Pathol. 28, 639–649 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles