Enantioselective Chan–Lam S-arylation of sulfenamides

Lücking, U. Sulfoximines: a neglected opportunity in medicinal chemistry. Angew. Chem. Int. Ed. 52, 9399–9408 (2013).Article 

Google Scholar 
Lücking, U. New opportunities for the utilization of the sulfoximine group in medicinal chemistry from the drug designer’s perspective. Chem. Eur. J. 28, e202201993 (2022).Article 
PubMed 

Google Scholar 
Kaiser, D., Klose, I., Oost, R., Neuhaus, J. & Maulide, N. Bond-forming and -breaking reactions at sulfur(IV): sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 119, 8701–8780 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wojaczynska, E. & Wojaczynski, J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem. Rev. 120, 4578–4611 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gilchrist, T. L. & Moody, C. J. The chemistry of sulfilimines. Chem. Rev. 77, 409–435 (1977).Article 
CAS 

Google Scholar 
Taylor, P. C. Sulfimides (sulfilimines): applications in stereoselective synthesis. Sulfur Rep. 21, 241–280 (1999).Article 
CAS 

Google Scholar 
Bizet, V., Hendriks, C. M. & Bolm, C. Sulfur imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 44, 3378–3390 (2015).Article 
CAS 
PubMed 

Google Scholar 
Vanacore, R. et al. A sulfilimine bond identified in collagen IV. Science 325, 1230–1234 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Christian, A. H. et al. A physical organic approach to tuning reagents for selective and stable methionine bioconjugation. J. Am. Chem. Soc. 141, 12657–12662 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, K. et al. An ultrasensitive cyclization-based fluorescent probe for imaging native HOBr in live cells and zebrafish. Angew. Chem. Int. Ed. 55, 12751–12754 (2016).Article 
CAS 

Google Scholar 
Lücking, U. Neglected sulfur(VI) pharmacophores in drug discovery: exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front. 6, 1319–1324 (2019).Article 

Google Scholar 
Zhang, X., Wang, F. & Tan, C.-H. Asymmetric synthesis of S(IV) and S(VI) stereogenic centers. JACS Au 3, 700–714 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Takada, H. et al. Catalytic asymmetric sulfimidation. J. Org. Chem. 62, 6512–6518 (1997).Article 
CAS 

Google Scholar 
Tomooka, C. S. & Carreira, E. M. Enantioselective nitrogen transfer to sulfides from nitridomanganese(V) complexes. Helv. Chim. Acta 85, 3773–3784 (2002).Article 
CAS 

Google Scholar 
Armstrong, A., Edmonds, I. D. & Swarbrick, M. E. Efficient nitrogen transfer from aldehyde-derived N-acyloxaziridines. Tetrahedron Lett. 44, 5335–5338 (2003).Article 
CAS 

Google Scholar 
Collet, F., Dodd, R. H. & Dauban, P. Stereoselective rhodium-catalyzed imination of sulfides. Org. Lett. 10, 5473–5476 (2008).Article 
CAS 
PubMed 

Google Scholar 
Wang, J., Frings, M. & Bolm, C. Enantioselective nitrene transfer to sulfides catalyzed by a chiral iron complex. Angew. Chem. Int. Ed. 52, 8661–8665 (2013).Article 
CAS 

Google Scholar 
Uchida, T. & Katsuki, T. Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C–H amination using azide compounds as nitrene precursors. Chem. Rec. 14, 117–129 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lebel, H., Piras, H. & Bartholoméüs, J. Rhodium-catalyzed stereoselective amination of thioethers with N-mesyloxycarbamates: DMAP and bis(DMAP)CH2Cl2 as key additives. Angew. Chem. Int. Ed. 53, 7300–7304 (2014).Article 
CAS 

Google Scholar 
Yoshitake, M., Hayashi, H. & Uchida, T. Ruthenium-catalyzed asymmetric N-acyl nitrene transfer reaction: imidation of sulfide. Org. Lett. 22, 4021–4025 (2020).Article 
CAS 
PubMed 

Google Scholar 
Annapureddy, R. R. et al. Silver-catalyzed enantioselective sulfimidation mediated by hydrogen bonding interactions. Angew. Chem. Int. Ed. 60, 7920–7926 (2021).Article 
CAS 

Google Scholar 
Greenwood, N. S., Champlin, A. T. & Ellman, J. A. Catalytic enantioselective sulfur alkylation of sulfenamides for the asymmetric synthesis of sulfoximines. J. Am. Chem. Soc. 144, 17808–17814 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kikuchi, K., Furukawa, N., Moriyama, M. & Oae, S. Nucleophilic substitution of tricoordinate sulfur atom of sulfonium salt with retention of configuration. Different stereochemistry of substitution by amidate anions. Bull. Chem. Soc. Jpn 58, 1934–1941 (1985).Article 
CAS 

Google Scholar 
Takada, H., Oda, M., Oyamada, A., Ohe, K. & Uemura, S. Catalytic diastereoselective sulfimidation of diaryl sulfides and application of chiral sulfimides to asymmetric allylic alkylation. Chirality 12, 299–312 (2000).Article 
CAS 
PubMed 

Google Scholar 
Tsuzuki, S. & Kano, T. Asymmetric synthesis of chiral sulfimides through the O-alkylation of enantioenriched sulfinamides and addition of carbon nucleophiles. Angew. Chem. Int. Ed. 62, e202300637 (2023).Article 
CAS 

Google Scholar 
West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, J. Q., Li, J. H. & Dong, Z. B. A review on the latest progress of Chan-Lam coupling reaction. Adv. Synth. Catal. 362, 3311–3331 (2020).Article 
CAS 

Google Scholar 
King, A. E., Brunold, T. C. & Stahl, S. S. Mechanistic study of copper-catalyzed aerobic oxidative coupling of arylboronic esters and methanol: insights into an organometallic oxidase reaction. J. Am. Chem. Soc. 131, 5044–5045 (2009).Article 
CAS 
PubMed 

Google Scholar 
King, A. E., Ryland, B. L., Brunold, T. C. & Stahl, S. S. Kinetic and spectroscopic studies of aerobic copper(II)-catalyzed methoxylation of arylboronic esters and insights into aryl transmetalation to copper(II). Organometallics 31, 7948–7957 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vantourout, J. C., Miras, H. N., Isidro-Llobet, A., Sproules, S. & Watson, A. J. Spectroscopic studies of the Chan–Lam amination: a mechanism-inspired solution to boronic ester reactivity. J. Am. Chem. Soc. 139, 4769–4779 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bose, S., Dutta, S. & Koley, D. Entering chemical space with theoretical underpinning of the mechanistic pathways in the Chan–Lam amination. ACS Catal. 12, 1461–1474 (2022).Article 
CAS 

Google Scholar 
Pooventhiran, T., Khilari, N. & Koley, D. Mechanistic avenues in the Chan-Lam-based etherification reaction: a computational exploration. Chem. Eur. J. 29, e202302983 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hardouin Duparc, V., Bano, G. L. & Schaper, F. Chan–Evans–Lam couplings with copper iminoarylsulfonate complexes: scope and mechanism. ACS Catal. 8, 7308–7325 (2018).Article 
CAS 

Google Scholar 
Liang, Q. et al. Synthesis of sulfilimines enabled by copper-catalyzed S-arylation of sulfenamides. J. Am. Chem. Soc. 145, 6310–6318 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y. et al. Synthesis of sulfilimines via selective S–C bond formation in water. Org. Lett. 25, 2134–2138 (2023).Article 
CAS 
PubMed 

Google Scholar 
Jutand, A. & Grimaud, L. Role of fluoride ions in palladium-catalyzed cross-coupling reactions. Synthesis 49, 1182–1189 (2016).Article 

Google Scholar 
Akutagawa, K., Furukawa, N. & Oae, S. Preparation of N-(arylsulfonyl)sulfoximines by oxidation of N-(arylsulfonyl)sulfilimines with sodium hypochlorite in a two-phase system. J. Org. Chem. 49, 2282–2284 (2002).Article 

Google Scholar 
Siemeister, G. et al. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol. Cancer Ther. 11, 2265–2273 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kim, E. et al. Novel compound and pharmaceutical composition comprising same as active ingredient. US patent 2020/0190024 A1 (2020).Albrecht, B. K. et al. Modulators of methyl modifying enzymes, compositions and uses thereof. US patent 9206128 B2 (2015).Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).Article 
CAS 

Google Scholar 
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).Article 
CAS 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
PubMed 

Google Scholar 
Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).Article 
CAS 

Google Scholar 
Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).Article 
CAS 

Google Scholar 
Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).Article 
CAS 

Google Scholar 
McLean, A. D. & Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980).Article 
CAS 

Google Scholar 
Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).Article 
CAS 

Google Scholar 
Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kitaura, K. & Morokuma, K. A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation. Int. J. Quantum Chem. 10, 325–340 (1976).Article 
CAS 

Google Scholar 
Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).Article 
CAS 

Google Scholar 
Horn, P. R. & Head-Gordon, M. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations. J. Chem. Phys. 144, 084118 (2016).Article 
PubMed 

Google Scholar 
Horn, P. R., Mao, Y. & Head-Gordon, M. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies. J. Chem. Phys. 144, 114107 (2016).Article 
PubMed 

Google Scholar 
Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 18, 23067–23079 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).Article 
CAS 

Google Scholar 
Thomas, A. A. et al. Mechanistically guided design of ligands that significantly improve the efficiency of CuH-catalyzed hydroamination reactions. J. Am. Chem. Soc. 140, 13976–13984 (2017).Article 

Google Scholar 
Chan, L., Morris, G. M. & Hutchison, G. R. Understanding conformational entropy in small molecules. J. Chem. Theory Comput. 17, 2099–2106 (2021).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles