Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp3)−H bonds

Yan, H., Hou, Z.-W. & Xu, H.-C. Photoelectrochemical C−H alkylation of heteroarenes with organotrifluoroborates. Angew. Chem. Int. Ed. 58, 4592–4595 (2019).Article 

Google Scholar 
Wu, S., Kaur, J., Karl, T. A., Tian, X. & Barham, J. P. Synthetic molecular photoelectrochemistry: new frontiers in synthetic applications, mechanistic insights and scalability. Angew. Chem. Int. Ed. 61, e202107811 (2022).Article 

Google Scholar 
Huang, H., Steiniger, K. A. & Lambert, T. H. Electrophotocatalysis: combining light and electricity to catalyze reactions. J. Am. Chem. Soc. 144, 12567–12583 (2022).Article 
PubMed 

Google Scholar 
Hardwick, T. & Ahmed, N. C–H functionalization via electrophotocatalysis and photoelectrochemistry: complementary synthetic approach. ACS Sustain. Chem. Eng. 9, 4324–4340 (2021).Article 

Google Scholar 
Yu, Y., Guo, P., Zhong, J.-S., Yuan, Y. & Ye, K.-Y. Merging photochemistry with electrochemistry in organic synthesis. Org. Chem. Front. 7, 131–135 (2020).Article 

Google Scholar 
Jiao, K.-J. et al. The applications of electrochemical synthesis in asymmetric catalysis. Chem. Catal. 2, 3019–3047 (2022).Article 

Google Scholar 
Wang, X.-Y., Xu, X.-T., Wang, Z.-H., F, P. & Mei, T.-S. Advances in asymmetric organotransition metal-catalyzed electrochemistry. Chin. J. Org. Chem. 40, 3738–3747 (2020).Article 

Google Scholar 
Chang, X., Zhang, Q. & Guo, C. Asymmetric electrochemical transformations. Angew. Chem. Int. Ed. 59, 12612–12622 (2020).Article 

Google Scholar 
Lin, Q., Li, L. & Luo, S. Asymmetric electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).Article 
PubMed 

Google Scholar 
Ghosh, M., Shinde, V.-S. & Rueping, M.-A. Review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J. Org. Chem. 15, 2710–2746 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Yuan, Y., Yang, J. & Zhang, J. Cu-catalyzed enantioselective decarboxylative cyanation via the synergistic merger of photocatalysis and electrochemistry. Chem. Sci. 14, 705–710 (2023).Article 
PubMed 

Google Scholar 
Yang, K., Wang, Y., Luo, S. & Fu, N.-K. Electrophotochemical metal-catalyzed enantioselective decarboxylative cyanation. Chem. Eur. J. 29, e202203962 (2023).Article 
PubMed 

Google Scholar 
Xiong, P., Ivlev, S.-I. & Meggers, E. Photoelectrochemical asymmetric dehydrogenative [2 + 2] cycloaddition between C–C single and double bonds via the activation of two C(sp3)–H bonds. Nat. Catal. 6, 1186–1193 (2023).Article 

Google Scholar 
Lai, X.-L. & Xu, H.-C. Photoelectrochemical asymmetric catalysis enables enantioselective heteroarylcyanation of alkenes via C–H functionalization. J. Am. Chem. Soc. 145, 18753–18759 (2023).Article 
PubMed 

Google Scholar 
Lai, X.-L., Chen, M., Wang, Y., Song, J. & Xu, H.-C. Photoelectrochemical asymmetric catalysis enables direct and enantioselective decarboxylative cyanation. J. Am. Chem. Soc. 144, 20201–20206 (2022).Article 
PubMed 

Google Scholar 
Fan, W. et al. Electrophotocatalytic decoupled radical relay enables highly efficient and enantioselective benzylic C–H functionalization. J. Am. Chem. Soc. 144, 21674–21682 (2022).Article 
PubMed 

Google Scholar 
Cai, C.-Y. et al. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of Benzylic C–H bonds. Nat. Catal. 5, 943–951 (2022).Article 

Google Scholar 
Wu, T. & Moeller, K.-D. Science of synthesis: electrochemistry in organic synthesis. Thieme Chem. 1, 481 (2021).
Google Scholar 
Wu, T. & Moeller, K.-D. Organic electrochemistry: expanding the scope of paired reactions. Angew. Chem. Int. Ed. 60, 12883–12890 (2021).Article 

Google Scholar 
Liu, D. et al. Paired electrolysis-enabled Nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides. Nat. Commun. 13, 7318 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Reguera, L. & Rivera, D.-G. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chem. Rev. 119, 9836–9860 (2019).Article 
PubMed 

Google Scholar 
Rotstein, B.-H., Zaretsky, S., Rai, V. & Yudin, A.-K. Small heterocycles in multicomponent reactions. Chem. Rev. 114, 8323–8359 (2014).Article 
PubMed 

Google Scholar 
Touré, B.-B. & Hall, D.-G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 109, 4439–4486 (2009).Article 
PubMed 

Google Scholar 
Zhu, S., Zhao, X., Li, H. & Chu, L.-L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by Nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).Article 
PubMed 

Google Scholar 
Plesniak, M.-P., Huang, H.-M. & Procter, D.-J. Radical cascade reactions triggered by single electron transfer. Nat. Rev. Chem. 1, 0077 (2017).Article 

Google Scholar 
Garbarino, S., Ravelli, D., Protti, S. & Basso, A. Photoinduced multicomponent reactions. Angew. Chem. Int. Ed. 55, 15476–15484 (2016).Article 

Google Scholar 
Godineau, E. & Landais, Y. Radical and radical–ionic multicomponent processes. Chem. Eur. J. 15, 3044–3055 (2009).Article 
PubMed 

Google Scholar 
Lipp, A., Badir, S.-O. & Molander, G.-A. Stereoinduction in metallaphotoredox catalysis. Angew. Chem. Int. Ed. 60, 1714–1726 (2021).Article 

Google Scholar 
Proctor, R. S.-J., Colgan, A.-C. & Phipps, R.-J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 12, 990–1004 (2020).Article 
PubMed 

Google Scholar 
Sibi, M.-P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).Article 
PubMed 

Google Scholar 
Wang, Y.-Z. et al. Enantioselective reductive cross-couplings of Olefins by merging electrochemistry with Nickel catalysis. J. Am. Chem. Soc. 12, 23910–23917 (2023).Article 

Google Scholar 
Li, X. et al. Three-component enantioselective alkenylation of organophosphonates via Nickel metallaphotoredox catalysis. Chem 9, 154–169 (2023).Article 

Google Scholar 
Xi, Y. et al. Catalytic asymmetric diarylation of internal acyclic styrenes and enamides. J. Am. Chem. Soc. 144, 8389–8398 (2022).Article 
PubMed 

Google Scholar 
Liu, C.-F. et al. Synthesis of tri- and tetrasubstituted stereocentres by Nickel-catalysed enantioselective olefin cross-couplings. Nat. Catal. 5, 934–942 (2022).Article 
ADS 

Google Scholar 
Apolinar, O. et al. Three-component asymmetric Ni-catalyzed 1,2-dicarbofunctionalization of unactivated alkenes via stereoselective migratory insertion. J. Am. Chem. Soc. 144, 19337–19343 (2022).Article 
PubMed 

Google Scholar 
Qiao, J.-B. et al. Enantioselective reductive divinylation of unactivated alkenes by Nickel-catalyzed cyclization coupling reaction. J. Am. Chem. Soc. 143, 12961–12967 (2021).Article 
PubMed 

Google Scholar 
Qian, P. et al. Catalytic enantioselective reductive domino alkyl arylation of acrylates via Nickel/Photoredox catalysis. Nat. Commun. 12, 6613 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Lu, F.-D., Lu, L.-Q., He, G.-F., Bai, J.-C. & Xiao, W.-J. Enantioselective radical carbocyanation of 1,3-dienes via photocatalytic generation of allylcopper complexes. J. Am. Chem. Soc. 143, 4168–4173 (2021).Article 
PubMed 

Google Scholar 
Zhang, Y. et al. Copper-catalyzed photoinduced enantioselective dual carbofunctionalization of alkenes. Org. Lett. 22, 1490–1494 (2020).Article 
PubMed 

Google Scholar 
Wei, X., Shu, W., García-Domínguez, A., Merino, E. & Nevado, C. Asymmetric Ni-catalyzed radical relayed reductive coupling. J. Am. Chem. Soc. 142, 13515–13522 (2020).Article 
PubMed 

Google Scholar 
Tu, H.-Y. et al. Enantioselective three-component fluoroalkylarylation of unactivated olefins through Nickel-catalyzed cross-electrophile coupling. J. Am. Chem. Soc. 142, 9604–9611 (2020).Article 
PubMed 

Google Scholar 
Guo, L. et al. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. 142, 20390–20399 (2020).Article 

Google Scholar 
Chierchia, M., Xu, P., Lovinger, G.-J. & Morken, J.-P. Enantioselective radical addition/cross-coupling of organozinc reagents, alkyl iodides, and alkenyl boron reagents. Angew. Chem. Int. Ed. 58, 14245–14249 (2019).Article 

Google Scholar 
Anthony, D., Lin, Q., Baudet, J. & Diao, T. Nickel-catalyzed asymmetric reductive diarylation of vinylarenes. Angew. Chem. Int. Ed. 58, 3198–3202 (2019).Article 

Google Scholar 
Sha, W. et al. Merging photoredox and copper catalysis: enantioselective radical cyanoalkylation of styrenes. ACS Catal. 8, 7489–7494 (2018).Article 

Google Scholar 
Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wang, F. et al. Enantioselective copper-catalyzed intermolecular cyanotrifluoromethylation of alkenes via radical process. J. Am. Chem. Soc. 138, 15547–15550 (2016).Article 
PubMed 

Google Scholar 
Wu, X. et al. Enantioselective 1,2-difunctionalization of dienes enabled by chiral palladium complex-catalyzed cascade arylation/allylic alkylation reaction. J. Am. Chem. Soc. 137, 13476–13479 (2015).Article 
PubMed 

Google Scholar 
Xu, S., Chen, H., Zhou, Z. & Kong, W.-Q. Three-component alkene difunctionalization by direct and selective activation of aliphatic C−H bonds. Angew. Chem. Int. Ed. 60, 7405–7411 (2021).Article 

Google Scholar 
Campbell, M.-W., Yuan, M., Polites, V.-C., Gutierrez, O. & Molander, G.-A. Photochemical C–H activation enables Nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 143, 3901–3910 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ouyang, X.-H. et al. Intermolecular dialkylation of alkenes with two distinct C(sp3)–H bonds enabled by synergistic photoredox catalysis and iron catalysis. Sci. Adv. 5, eaav9839 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ge, L., Wang, H., Liu, Y. & Feng, X. Asymmetric three-component radical alkene carboazidation by direct activation of Aliphatic C–H bonds. J. Am. Chem. Soc. 146, 13347–13355 (2024).Article 
PubMed 

Google Scholar 
Hu, X., Cheng-Sánchez, I., Kong, W., Molander, G. A. & Nevado, C. Nickel-catalysed enantioselective alkene dicarbofunctionalization enabled by photochemical aliphatic C–H bond activation. Nat. Catal. 7, 655–665 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Fan, L.-F., Liu, R., Ruan, X.-Y., Wang, P.-S. & Gong, L.-Z. Asymmetric 1,2-oxidative alkylation of conjugated dienes via aliphatic C–H bond activation. Nat. Synth. 1, 946–955 (2022).Article 
ADS 

Google Scholar 
Qin, Y., Zhu, L. & Luo, S. Organocatalysis in inert C–H bond functionalization. Chem. Rev. 117, 9433–9520 (2017).Article 
PubMed 

Google Scholar 
Zou, L., Xiang, S.-Q., Sun, R. & Lu, Q.-Q. Selective C(sp3)–H arylation/alkylation of alkanes enabled by paired electrocatalysis. Nat. Commun. 14, 7992 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zou, L., Wang, X.-F., Xiang, S.-Q., Zheng, W.-P. & Lu, Q.-Q. Paired oxidative and reductive catalysis: breaking the potential barrier of electrochemical C(sp3)−H alkenylation. Angew. Chem. Int. Ed. 62, e202301026 (2023).Article 

Google Scholar 
Zheng, X.-L., Peng, P., Huang, C. & Lu, Q.-Q. Reversing conventional site-selectivity: electrochemically driven C(sp2)−H/C(sp3)−H coupling with H2 evolution. CCS Chem. 5, 1086–1095 (2023).Article 

Google Scholar 
Wang, B.-B. et al. Electrooxidative activation of B−B bond in B2cat2: access to gem-Diborylalkanes via paired electrolysis. Angew. Chem. Int. Ed. 62, e202218179 (2023).Article 

Google Scholar 
Tao, Y.-S., Huang, C. & Lu, Q.-Q. Cycloaddition with asymmetric photoelectrocatalysis. Nat. Catal. 6, 1107–1108 (2023).Article 

Google Scholar 
Peng, P. et al. Unlocking the nucleophilicity of strong Alkyl C–H bonds via Cu/Cr catalysis. ACS Cent. Sci. 9, 756–762 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, C., Tao, Y.-S., Cao, X.-Y., Zhou, C. & Lu, Q.-Q. Asymmetric paired electrocatalysis: enantioselective olefin–sulfonylimine coupling. J. Am. Chem. Soc. 164, 1984–1991 (2024).Article 

Google Scholar 
Huang, C. et al. Epoxide electroreduction. J. Am. Chem. Soc. 144, 1389–1395 (2022).Article 
PubMed 

Google Scholar 
Wang, B.-B. et al. Electrochemical borylation of alkyl halides: fast, scalable access to Alkyl Boronic Esters. J. Am. Chem. Soc. 143, 12985–12991 (2021).Article 
PubMed 

Google Scholar 
Kawamata, Y. et al. Electrochemically driven, Ni-catalyzed aryl amination: scope, mechanism, and applications. J. Am. Chem. Soc. 141, 6392–6402 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Budnikova, Y.-H., Perichon, J., Yakhvarov, D.-G., Kargin, Y.-M. & Sinyashin, O.-G. Highly reactive σ-organonickel complexes in electrocatalytic processes. J. Organomet. Chem. 630, 185–192 (2001).Article 

Google Scholar 
Satyanarayana, T., Abraham, S. & Kagan, H.-B. Nonlinear effects in asymmetric catalysis. Angew. Chem. Int. Ed. 48, 456–494 (2009).Article 

Google Scholar 
Juliá, F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: an emerging tool for sustainable organic synthesis. ChemCatChem 14, e202200916 (2022).Article 

Google Scholar 
Abderrazak, Y., Bhattacharyya, A. & Reiser, O. Visible-light-induced homolysis of earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. 60, 21100–21115 (2021).Article 

Google Scholar 

Hot Topics

Related Articles