On discovery of novel hub genes for ER+ and TN breast cancer types through RNA seq data analyses and classification models

Downie, F. P., Mar Fan, H. G., Houédé-Tchen, N., Yi, Q. & Tannock, I. F. Cognitive function, fatigue, and menopausal symptoms in breast cancer patients receiving adjuvant chemotherapy: Evaluation with patient interview after formal assessment. Psycho Oncol. J. Psychol. Soc. Behav. Dimens. Cancer 15, 921–930 (2006).
Google Scholar 
Fan, H. G. M. et al. Fatigue, menopausal symptoms, and cognitive function in women after adjuvant chemotherapy for breast cancer: 1-and 2-year follow-up of a prospective controlled study. J. Clin. Oncol. 23(31), 8025–8032 (2005).Article 
PubMed 

Google Scholar 
Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263 (2024).Article 
PubMed 

Google Scholar 
Youn, H. J. & Han, W. A review of the epidemiology of breast cancer in Asia: Focus on risk factors. Asian Pac. J. Cancer Prev. APJCP 21(4), 867 (2020).Article 
CAS 
PubMed 

Google Scholar 
Menhas, R. & Shumaila, U. Breast cancer among Pakistani women. Iran. J. Pub. Health 44(4), 586 (2015).
Google Scholar 
Rosen, E. M., Fan, S., Pestell, R. G. & Goldberg, I. D. BRCA1 gene in breast cancer. J. Cell. Physiol. 196(1), 19–41 (2003).Article 
CAS 
PubMed 

Google Scholar 
Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2(1), a001008 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem. 273(22), 13375–13378 (1998).Article 
CAS 
PubMed 

Google Scholar 
Gill, R. et al. Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene 30(35), 3784–3791 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Campeau, P. M., Foulkes, W. D. & Tischkowitz, M. D. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum. Genet. 124, 31–42 (2008).Article 
CAS 
PubMed 

Google Scholar 
Pharoah PD, Guilford P, Caldas C, Consortium IGCL. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121(6), 1348–1353 (2001).Article 

Google Scholar 
Kurosky, S. K., Mitra, D., Zanotti, G. & Kaye, J. A. Treatment patterns and outcomes of patients with metastatic ER+/HER-2− breast cancer: A multicountry retrospective medical record review. Clin. Breast Cancer 18(4), e529–e538 (2018).Article 
PubMed 

Google Scholar 
Gonçalves, H. Jr. et al. Survival study of triple-negative and non-triple-negative breast cancer in a Brazilian cohort. Clin. Med. Insights Oncol. 12, 1179554918790563 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, J. & Hicks, C. Breast cancer type classification using machine learning. J.Personal. Med. 11(2), 61 (2021).Article 

Google Scholar 
Perou, C. Molecular stratification of triple-negative breast cancers. Oncologist 15, 39–48 (2010).Article 
CAS 
PubMed 

Google Scholar 
Joyce, D. et al. Prospective comparison of outcome after treatment for triple-negative and non-triple-negative breast cancer. Surgeon 15(5), 272–277 (2017).Article 
CAS 
PubMed 

Google Scholar 
Li, X. et al. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat. 161, 279–287 (2017).Article 
PubMed 

Google Scholar 
Pan, X.-B., Qu, S., Jiang, Y.-M. & Zhu, X.-D. Triple negative breast cancer versus non-triple negative breast cancer treated with breast conservation surgery followed by radiotherapy: A systematic review and meta-analysis. Breast Care 10(6), 413–416 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Ye, J. et al. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel–cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines. Int. J. Nanomed. 11, 4125–4140 (2016).Article 
CAS 

Google Scholar 
Qiu, J. et al. Comparison of clinicopathological features and prognosis in triple-negative and non-triple negative breast cancer. J. Cancer 7(2), 167 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Podo, F. et al. Triple-negative versus non–triple-negative breast cancers in high-risk women: Phenotype features and survival from the HIBCRIT-1 MRI-including screening study. Clin. Cancer Res. 22(4), 895–904 (2016).Article 
CAS 
PubMed 

Google Scholar 
Nabi, M., Ahangar, A., Wahid, M. & Kuchay, S. Clinicopathological comparison of triple negative breast cancers with non-triple negative breast cancers in a hospital in North India. Niger. J. Clin. Pract. 18(3), 381–386 (2015).Article 
CAS 
PubMed 

Google Scholar 
Koshy, N., Quispe, D., Shi, R., Mansour, R. & Burton, G. V. Cisplatin–gemcitabine therapy in metastatic breast cancer: Improved outcome in triple negative breast cancer patients compared to non-triple negative patients. Breast 19(3), 246–248 (2010).Article 
PubMed 

Google Scholar 
Lei, X. et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat. Commun. 13(1), 3882 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009).Article 
CAS 
PubMed 

Google Scholar 
Kohl, M., Wiese, S. & Warscheid, B.Cytoscape: software for visualization and analysis of biological networks. Data Min. Proteom. Stand. Appl. 696, 291–303 (2011).Sarkans, U. et al. From arrayexpress to biostudies. Nucleic Acids Res. 49(D1), D1502–D1506 (2021).Article 
CAS 
PubMed 

Google Scholar 
Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, D28–D31 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Zararsız, G. et al. A comprehensive simulation study on classification of RNA-Seq data. PloS ONE 12(8), e0182507 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Jabeen, A., Ahmad, N. & Raza, K. Machine learning-based state-of-the-art methods for the classification of rna-seq data. Class. BioApps Automat. Decis. Mak. 26, 133–172 (2018).Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS ONE 6(7), e21800 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Szklarczyk, D. et al. The STRING database in 2017: Quality-365 controlled protein-protein association networks made broadly accessible. Nucleic Acids Res. 45, D36–D368 (2017).Article 

Google Scholar 
Udhaya Kumar, S. et al. Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: A systematic and bioinformatics approach. Front. Genet. 11, 734 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saito, R. et al. A travel guide to cytoscape plugins. Nat. Methods 9(11), 1069–1076 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chin, C. H. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(4), 1–7 (2014).
Google Scholar 
Chandrashekar, D. S. et al. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8), 649–658 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Z., Zhou, J., Wang, Z. & Zhou, Z. Analysis of SEC24D gene in breast cancer based on UALCAN database. Open Life Sci. 14(1), 707–711 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Oliveros JC: VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html (2007).Kang, J., Sergio, C. M., Sutherland, R. L. & Musgrove, E. A. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. BMC Cancer 14(1), 1–13 (2014).Article 

Google Scholar 
Liu, Y. et al. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J. Controll. Release 192, 114–121 (2014).Article 
CAS 

Google Scholar 
Yuan, B. et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin. Cancer Res. 12(2), 405–410 (2006).Article 
CAS 
PubMed 

Google Scholar 
Shigeishi, H. et al. Correlation of human Bub1 expression with tumor-proliferating activity in salivary gland tumors. Oncol. Rep. 15(4), 933–938 (2006).CAS 
PubMed 

Google Scholar 
Ouyang, B., Knauf, J. A., Ain, K., Nacev, B. & Fagin, J. A. Mechanisms of aneuploidy in thyroid cancer cell lines and tissues: Evidence for mitotic checkpoint dysfunction without mutations in BUB1 and BUBR1. Clin. Endocrinol. 56(3), 341–350 (2002).Article 
CAS 

Google Scholar 
Bell, R., Barraclough, R. & Vasieva, O. Gene expression meta-analysis of potential metastatic breast cancer markers. Curr. Mol. Med. 17(3), 200–210 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, W. X. et al. Bioinformatics analysis revealing prognostic significance of RRM2 gene in breast cancer. Biosci. Rep. 39, BSR20182062 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yao, W., Jiang, M., Zhang, M., Zhang, H. & Liang, X. TTK: A promising target in malignant tumors. J. Cell. Signal. 2(3), 212–220 (2021).
Google Scholar 
Tang, A. et al. Aurora kinases: Novel therapy targets in cancers. Oncotarget 8(14), 23937 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, F. et al. Combination of AURKA inhibitor and HSP90 inhibitor to treat breast cancer with AURKA overexpression and TP53 mutations. Med. Oncol. 39(12), 180 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bu, Y., Shi, L., Yu, D., Liang, Z. & Li, W. CDCA8 is a key mediator of estrogen-stimulated cell proliferation in breast cancer cells. Gene 703, 1–6 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sun, J. et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell Int. 19(1), 1–11 (2019).Article 

Google Scholar 
Landberg, G., Erlanson, M., Roos, G., Tan, E. M. & Casiano, C. A. Nuclear autoantigen p330d/CENP-F: A marker for cell proliferation in human malignancies. Cytom. J. Int. Soc. Anal. Cytol. 25(1), 90–98 (1996).CAS 

Google Scholar 
Yin, Y., Cai, J., Meng, F., Sui, C. & Jiang, Y. MiR-144 suppresses proliferation, invasion, and migration of breast cancer cells through inhibiting CEP55. Cancer Biol. Ther. 19(4), 306–315 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wei, R. et al. Bioinformatic analysis revealing mitotic spindle assembly regulated NDC80 and MAD2L1 as prognostic biomarkers in non-small cell lung cancer development. BMC Med. Genom. 13, 1–14 (2020).Article 

Google Scholar 

Hot Topics

Related Articles