Thermodynamic evaluation of the aerial and aqueous oxidation of Al – Mg, Al – Si and Al – Mg – Si system alloys at 298 K

Rambabu, P., Eswara Prasad, N., Kutumbarao, V. V. & Wanhill, R. J. H. Aluminium Alloys for Aerospace Applications. In: Aerospace Materials and Material Technologies (eds. Eswara Prasad, N., & Wanhill, R. J. H.) 29–52; https://doi.org/10.1007/978-981-10-2134-3_2 (Springer Singapore, 2017).Heinz, A. et al. Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A 280, 102–107 (2000).Article 

Google Scholar 
Miller, W. et al. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280, 37–49 (2000).Article 

Google Scholar 
Fridlyander, I. N. et al. Aluminum alloys: Promising materials in the automotive industry. Metal Sci. Heat Treat 44, 365–370 (2002).Article 
CAS 

Google Scholar 
Davis, J. R. Aluminum and Aluminum Alloys. In: Alloying: Understanding the Basics (ed. Davis, J. R.) 351–416; https://doi.org/10.1361/autb2001p351 (ASM International, 2001).Røyset, J. & Ryum, N. Scandium in aluminium alloys. Int. Mater. Rev. 50, 19–44 (2005).Article 

Google Scholar 
Dorin, T., Ramajayam, M., Vahid, A. & Langan, T. Chapter 12 – Aluminium Scandium Alloys. In: Fundamentals of Aluminium Metallurgy. Recent Advances. Woodhead Publishing Series in Metals and Surface Engineering (ed. Lumley, R. N.), 439–494; https://doi.org/10.1016/B978-0-08-102063-0.00012-6 (Woodhead Publishing, 2018).Wendt, A., Weiss, K., Ben–Dov, A., Bamberger, M. & Bronfin, B. Magnesium Castings in Aeronautics Applications — Special Requirements. In: Essential Readings in Magnesium Technology (eds Mathaudhu, S. N., Luo, A. A., Neelameggham, N. R., Nyberg, E. A. & Sillekens, W. H.) 65–69; https://doi.org/10.1007/978-3-319-48099-2_9 (Springer, Cham, 2016).Furuya, H., Kogiso, N., Matunaga, S. & Senda, K. Applications of magnesium alloys for aerospace structure systems. Mater. Sci. Forum 350–351, 341–348 (2000).Article 

Google Scholar 
Luo, A. A. & Sachdev, A. K. 12 – Applications of magnesium alloys in automotive engineering. In: Advances in Wrought Magnesium Alloys. Fundamentals of Processing, Properties and Applications. Woodhead Publishing Series in Metals and Surface Engineering (eds Bettles, C. & Barnett, M.) 393–426; https://doi.org/10.1533/9780857093844.3.393 (Woodhead Publishing, 2012).Kulekci, M. K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Tech. 39, 851–865 (2007).Article 

Google Scholar 
Sameer Kumar, D., Tara Sasanka, C., Ravindra, K. & Suman, K. N. S. Magnesium and Its Alloys in Automotive Applications – A Review. Am. J. Mater. Sci. Tech. 4, 12–30 (2015).
Google Scholar 
Knipling, K., Dunand, D. & Seidman, D. Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr Alloys. Metal. Mater. Trans. A 38, 2552–2563 (2007).Article 

Google Scholar 
Fuller, C. B., Krause, A. R., Dunand, D. C. & Seidman, D. N. Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions. Mater. Sci. Eng. A 338, 8–16 (2002).Article 

Google Scholar 
Parvizi, R., Tan, M. Y. & Hughes, A. E. Chapter 14 – Recent insights into corrosion initiation at the nanoscale. In: Fundamentals of Aluminium Metallurgy. Recent Advances. Woodhead Publishing Series in Metals and Surface Engineering (ed Lumley, R. N.) 525–551; https://doi.org/10.1016/B978-0-08-102063-0.00014-X (Woodhead Publishing, 2018).Davis, J. R. Corrosion of aluminum and aluminum alloys (ASM International, 1999).Ghali, E. Corrosion resistance of aluminum and magnesium alloys: understanding, performance, and testing; https://doi.org/10.1002/9780470531778 (John Wiley & Sons, 2010).Zeng, R. C. et al. Review of studies on corrosion of magnesium alloys. Trans. Non–Ferr. Met. Soc. Chi. 16, s763–s771 (2006).Article 

Google Scholar 
Birbilis, N. & Buchheit, R. G. Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH. J. Electrochem. Soc. 155, C117–C126 (2008).Article 
CAS 

Google Scholar 
Velikokhatnyi, O. I. & Kumta, P. N. First–principles studies on alloying and simplified thermodynamic aqueous chemical stability of calcium-, zinc-, aluminum-, yttrium- and iron-doped magnesium alloys. Acta Biomater 6, 1698–1704 (2010).Article 
CAS 
PubMed 

Google Scholar 
Li, G. H., Pan, S. P., Qin, J. Y., Zhang, Z. H. & Wang, W. M. Insight into thermodynamics and corrosion behavior of Al–Ni–Gd glassy alloys from atomic structure. Cor. Sci 66, 360–368 (2013).Article 
CAS 

Google Scholar 
Anaee, R. A. M. Thermodynamic and kinetic study for corrosion of Al–Si–Cu/Y2O3 composites. Asian J. Chem. 26, 4469–4474 (2014).Article 
CAS 

Google Scholar 
Kuchariková, L., Liptáková, T., Tillová, E., Kajánek, D. & Schmidová, E. Role of chemical composition in corrosion of aluminum alloys. Metals 8, 581 (2018).Article 

Google Scholar 
Esmaily, M. et al. Fundamentals and advances in magnesium alloy corrosion. Progr. Mater. Sci. 89, 92–193 (2017).Article 
CAS 

Google Scholar 
Limmer, K. R., Williams, K. S., Labukas, J. P. & Andzelm, J. W. First principles modeling of cathodic reaction thermodynamics in dilute magnesium alloys. Corrosion 73, 506–517 (2017).Article 
CAS 

Google Scholar 
Kozeschnik, E. Mean–Field Microstructure Kinetics Modeling. In: Encyclopedia of Materials: Metals and Alloys. (ed Caballero, F. G.) Vol. 4 521–526; https://doi.org/10.1016/B978-0-12-819726-4.00055-7 (Elsevier, 2022).Hildebrand, J. H. A quantitative treatment of deviations from Raoult’s law. Proc. Nat. Acad. Sci. USA 13, 267–272 (1927).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Redlich, O. & Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948).Article 

Google Scholar 
Aluminium alloy. Wikipedia, The Free Encyclopedia https://en.wikipedia.org/w/index.php?title=Aluminium_alloy&oldid=1149516425.Zhong, Y., Yang, M. & Liu, Z. K. Contribution of first–principles energetics to Al–Mg thermodynamic modeling. Calphad 29, 303–311 (2005).Article 
CAS 

Google Scholar 
Liang, P. et al. Experimental investigation and thermodynamic calculation of the Al–Mg–Zn system. Thermochim. Acta 314, 87–110 (1998).Article 
CAS 

Google Scholar 
Zuo, Y. & Chang, Y. A. Thermodynamic calculation of the Al–Mg phase diagram. Calphad 17, 161–174 (1993).Article 
CAS 

Google Scholar 
Saunders, N. A review and thermodynamic assessment of the Al–Mg and Mg–Li systems. Calphad 14, 61–70 (1990).Article 
CAS 

Google Scholar 
Liu, Z. K. & Chang, Y. A. Thermodynamic assessment of the Al–Fe–Si system. Metal. Mater. Trans. A 30, 1081–1085 (1999).Article 

Google Scholar 
Seema et al. Thermodynamic modeling of Al–Si nanoalloy phase diagram. J. Nanopart. Res. 23, 245 (2021).Article 
CAS 

Google Scholar 
Ikhmayies, S. Phase Diagrams of Al–Si System. In: Energy Technology 2019: Carbon dioxide management and other technologies. The Minerals, Metals & Materials Series (eds Wang, T. et al.) 231–237; https://doi.org/10.1007/978-3-030-06209-5_24 (Springer International Publishing, 2019).Li, Y. et al. Thermodynamic investigation on phase formation in the Al–Si rich region of Al–Si–Ti system. Mater. Design 102, 78–90 (2016).Article 
CAS 

Google Scholar 
Hentzell, H. T. G. et al. Formation of aluminum silicide between two layers of amorphous silicon. Appl. Phys. Lett. 50, 933–934 (1987).Article 
CAS 

Google Scholar 
Wang, Q., Zhao, K., Wei, S., Liu, H. & Zhang, S. Crystalline aluminum silicides with electride state and superconductivity under high pressure. Mater. Today Phys. 28, 100853 (2022).Article 
CAS 

Google Scholar 
Gordeev, I., Kolotova, L. & Starikov, S. Formation of metastable aluminum silicide as intermediate stage of Al–Si alloy crystallization. Scripta Mater 210, 114481 (2022).Article 
CAS 

Google Scholar 
Mabuchi, M. & Higashi, K. Strengthening mechanisms of Mg–Si alloys. Acta Mater 44, 4611–4618 (1996).Article 
CAS 

Google Scholar 
Diqing, W., Jincheng, W., Gaifang, W. & Gencang, Y. High damping properties of Mg–Si binary hypoeutectic alloys. Mater. Lett. 63, 391–393 (2009).Article 

Google Scholar 
Mabuchi, M., Kubota, K. & Higashi, K. Tensile strength, ductility and fracture of magnesium–silicon alloys. J. Mater. Sci. 31, 1529–1535 (1996).Article 
CAS 

Google Scholar 
Yuan, X., Sun, W., Du, Y., Zhao, D. & Yang, H. Thermodynamic modeling of the Mg–Si system with the Kaptay equation for the excess Gibbs energy of the liquid phase. Calphad 33, 673–678 (2009).Article 
CAS 

Google Scholar 
Lacaze, J. & Valdes, R. CALPHAD–type assessment of the Al–Mg–Si system. Monatsh. Chem. 136, 1899–1907 (2005).Article 
CAS 

Google Scholar 
Chakraborti, N. & Lukas, H. L. Thermodynamic optimization of the Mg–Al–Si phase diagram. Calphad 16, 79–86 (1992).Article 
CAS 

Google Scholar 
Tang, Y., Du, Y., Zhang, L., Yuan, X. & Kaptay, G. Thermodynamic description of the Al–Mg–Si system using a new formulation for the temperature dependence of the excess Gibbs energy. Thermochim. Acta 527, 131–142 (2012).Article 
CAS 

Google Scholar 
Povoden–Karadeniz, E. et al. CALPHAD modeling of metastable phases in the Al–Mg–Si system. Calphad 43, 94–104 (2013).Article 

Google Scholar 
Chase Jr, M. W. JANAF thermochemical tables third edition. J. Phys. Chem. Ref. Data 14, Supplement 1 (1985).Hillert, M. & Staffansson, L. I. Regular–solution model for stoichiometric phases and ionic melts. Acta Chem. Scand. 24, 3618–3626 (1970).Article 
CAS 

Google Scholar 
Sundman, B. & Ågren, J. A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids 42, 297–301 (1981).Article 
CAS 

Google Scholar 
Waring, E. Problems concerning Interpolations. By Edward Waring, M. D. F. R. S. and of the Institute of Bononia, Lucasian Professor of Mathematics in the University of Cambridge. Phil. Trans. Roy. Soc. Lond. 69, 59–67 (1779).
Google Scholar 
Lagrange, J. L. Leçons élémentaires sur les mathématiques données à l’École Normale en 1795. J. de l’École polytechnique / publié par le Conseil d’instruction de cet établissement 2, 173–278 (1812).
Google Scholar 
Taylor, J. R., Dinsdale, A. T., Hilleit, M. & Selleby, M. A Critical assessment of tnermodynamic and phase diagram data for the Al–O system. Calphad 16, 173–179 (1992).Article 
CAS 

Google Scholar 
Hallstedt, B. The Magnesium—Oxygen system. Calphad 17, 281–286 (1993).Article 
CAS 

Google Scholar 
Liang, S. M. & Schmid–Fetzer, R. Complete thermodynamic description of the Mg–Ca–O phase diagram including the Ca–O, Mg–O and CaO–MgO subsystems. J. Eur. Ceram. Soc. 38, 4768–4785 (2018).Article 
CAS 

Google Scholar 
Zhu, Q., Oganov, A. R. & Lyakhov, A. O. Novel stable compounds in the Mg–O system under high pressure. Phys. Chem. Chem. Phys. 15, 7696–7700 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hallstedt, B. Thermodynamic assessment of the Silicon—Oxygen system. Calphad 16, 53–61 (1992).Article 
CAS 

Google Scholar 
Hallstedt, B. Thermodynamic assessment of the system MgO–Al2O3. J. Am. Ceram. Soc. 75, 1497–1507 (1992).Article 
CAS 

Google Scholar 
Mao, H., Selleby, M. & Sundman, B. A re–evaluation of the liquid phases in the CaO–Al2O3 and MgO–Al2O3 systems. Calphad 28, 307–312 (2004).Article 
CAS 

Google Scholar 
Berjonneau, J., Prigent, P. & Poirier, J. The development of a thermodynamic model for Al2O3–MgO refractory castable corrosion by secondary metallurgy steel ladle slags. Ceram. Inter 35, 623–625 (2009).Article 
CAS 

Google Scholar 
Jung, I. H., Decterov, S. A. & Pelton, A. D. Critical thermodynamic evaluation and optimization of the MgO–Al2O3, CaO–MgO–Al2O3, and MgO–Al2O3–SiO2 systems. J. Phase Equ. Diff 25, 329–345 (2004).Article 
CAS 

Google Scholar 
Ma, T., Liu, Y., Gao, F., Zhang, L. & Du, Y. Thermodynamic optimization and calculation of the Al2O3-MgO and Al2O3-MgO-SiO2 systems. Mater. Sci. Eng. Powder Met. 27, 360–371 (2022).
Google Scholar 
Henriksen, A. F. & Kingery, W. D. The solid solubility of Sc2O3, Al2O3, Cr2O3, SiO2 and ZrO2 in MgO. Ceramurgia Int 5, 11–17 (1979).Article 
CAS 

Google Scholar 
Hillert, M. & Jonsson, S. Prediction of the Al–Si–O system. Calphad 16, 193–198 (1992).Article 
CAS 

Google Scholar 
Zhang, C., Zhang, F., Cao, W. S. & Chang, Y. A. Thermodynamic modeling of the Al–Si–Sr–O quaternary system. Intermetallics 18, 1419–1427 (2010).Article 
CAS 

Google Scholar 
Mao, H., Selleby, M. & Sundman, B. Phase equilibria and thermodynamics in the Al2O3–SiO2 system—modeling of mullite and liquid. J. Am. Ceram. Soc 88, 2544–2551 (2005).Article 
CAS 

Google Scholar 
Eriksson, G. & Pelton, A. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO–Al2O3, Al2O3–SiO2, and CaO–Al2O3–SiO2 systems. Metal. Trans. B 24, 807–816 (1993).Article 

Google Scholar 
Howald, R. A. & Eliezer, I. The thermodynamic properties of mullite. J. Phys. Chem. 82, 2199–2204 (1978).Article 
CAS 

Google Scholar 
Schneider, H. & Komarneni, S. Mullite (John Wiley & Sons, 2006).Whitney, D. L. Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey. Am. Miner. 87, 405–416 (2002).Article 
CAS 

Google Scholar 
Hemingway, B. S., Robie, R. A., Evans, H. T. & Kerrick, D. M. Heat capacities and entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the Al2SiO5 phase diagram. Am. Miner. 76, 1597–1613 (1991).CAS 

Google Scholar 
Holdaway, M. J. & Mukhopadhyay, B. A reevaluation of the stability relations of andalusite: thermochemical data and phase diagram for the aluminum silicates. Am. Miner. 78, 298–315 (1993).CAS 

Google Scholar 
Salje, E. Heat capacities and entropies of andalusite and sillimanite: the influence of fibrolitization on the phase diagram of the Al2SiO5 polymorphs. Am. Miner 71, 1366–1371 (1986).CAS 

Google Scholar 
Bradt, R. C. The sillimanite minerals: andalusite, kyanite, and sillimanite. In: Ceramic and Glass Materials: Structure, Properties and Processing (eds Shackelford, J. F. & Doremus, R. H.) 41–48; https://doi.org/10.1007/978-0-387-73362-3 (Springer Science & Business Media, 2008).Holdaway, M. J. Stability of andalusite and the aluminum silicate phase diagram. Am. J. Sci. 271, 97–131 (1971).Article 
CAS 

Google Scholar 
Waldbaum, D. R. Thermodynamic properties of mullite, andalusite, kyanite and sillimanite. Am. Miner. 50, 186–195 (1965).CAS 

Google Scholar 
Anderson, P. A. M., Newton, R. C. & Kleppa, O. J. The enthalpy change of the andalusite–sillimanite reaction and the Al2SiO5 diagram. Am. J. Sci. 277, 585–593 (1977).Article 
CAS 

Google Scholar 
Hallstedt, B. Thermodynamic calculation of some subsystems of the Al–Ca–Mg–Si–O system. J. Phase Equ. 14, 662–675 (1993).Article 
CAS 

Google Scholar 
Hillert, M. & Wang, X. A study of the thermodynamic properties of MgO–SiO2 system. Calphad 13, 253–266 (1989).Article 
CAS 

Google Scholar 
Huang, W., Hillert, M. & Wang, X. Thermodynamic assessment of the CaO–MgO–SiO2 system. Metal. Mater. Trans. A 26, 2293–2310 (1995).Article 

Google Scholar 
Swamy, V., Saxena, S. K. & Sundman, B. An assessment of the one–bar liquidus phase relations in the MgO – SiO2 system. Calphad 18, 157–164 (1994).Article 
CAS 

Google Scholar 
Howald, R. A. & Scanlon, M. J. Heats of fusion and phase equilibria in the MgO – SiO2 system. Calphad 13, 33–43 (1989).Article 
CAS 

Google Scholar 
Dorogokupets, P. I., Dymshits, A. M., Sokolova, T. S., Danilov, B. S. & Litasov, K. D. The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3–perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa. Russ. Geol. Geophys. 56, 172–189 (2015).Article 

Google Scholar 
Sawamoto, H. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200 °C: phase stability and properties of tetragonal garnet. In: High‐Pressure Research in Mineral Physics: A Volume in Honor of Syun‐iti Akimoto. (eds Manghnani, M. H. & Syono, Y.) Vol. 39 209–219; https://doi.org/10.1029/GM039p0209 (John Wiley & Sons, 1987).Choudhury, N. & Chaplot, S. L. Free energy and relative stability of the enstatite Mg2Si2O6 polymorphs. Solid State Comm 114, 127–132 (2000).Article 
CAS 

Google Scholar 
Lee, W. E. & Heuer, A. H. On the polymorphism of enstatite. J. Am. Ceram. Soc. 70, 349–360 (1987).Article 
CAS 

Google Scholar 
Mao, H., Fabrichnaya, O., Selleby, M. & Sundman, B. Thermodynamic assessment of the MgO–Al2O3–SiO2 system. J. Mater. Res 20, 975–986 (2005).Article 
CAS 

Google Scholar 
Fabrichnaya, O., Costa e Silva, A. & Aldinger, F. Assessment of thermodynamic functions in the MgO–Al2O3–SiO2 system. Z. Metal 95, 793–805 (2004).CAS 

Google Scholar 
Pankrats, L. B., Stuve, J. M. & Gokcen, N. A. Thermodynamic Data for Mineral Technology (Bureau of Mines, 1984).Hubbard, K. J. & Schlom, D. G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res 11, 2757–2776 (1996).Article 
CAS 

Google Scholar 
Schmalzried, H. & Pelton, A. D. Zur geometrischen Darstellung von Phasengleichgewichten. Ber. Bunsen–Ges. Phys. Chem 77, 90–94 (1973).Article 
CAS 

Google Scholar 
Brown, P. L. & Ekberg, C. Hydrolysis of metal ions (John Wiley & Sons, 2016).Wefers, K., & Misra, C. Oxides and hydroxides of aluminum. Vol. 19 (Alcoa Laboratories, 1987).Perkins, D., Essene, E. J., Westrum, E. F. & Wall, V. J. New thermodynamic data for diaspore and their application to the system Al2O3–SiO2–H2O. Am. Miner 64, 1080–1090 (1979).CAS 

Google Scholar 
Kennedy, G. C. Phase relations in the system of Al2O3–H2O at high temperatures and pressures. Am. J. Sci. 257, 563–573 (1959).Article 

Google Scholar 
Bratton, R. J. & Brindley, G. W. Structure‐Controlled Reactions in Kaolinite‐Diaspore‐Boehmite Clays. J. Am. Ceram. Soc. 45, 513–516 (1962).Article 
CAS 

Google Scholar 
Barnhisel, R. I. & Rich, C. I. Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces. Soil Sci. Soc. Am. J. 29, 531–534 (1965).Article 
CAS 

Google Scholar 
Chesworth, W. The stability of gibbsite and boehmite at the surface of the earth. Clays Clay Miner 20, 369–374 (1972).Article 
CAS 

Google Scholar 
Jiang, Y. F., Liu, C. L., Xue, J., Li, P. & Yu, J. G. Insights into the polymorphic transformation mechanism of aluminum hydroxide during carbonation of potassium aluminate solution. CrystEngComm 20, 1431–1442 (2018).Article 
CAS 

Google Scholar 
Huang, P. M., Wang, M. K., Kämpf, N. & Schulze, D. G. Aluminum hydroxides. In: Soil mineralogy with environmental applications. (eds Dixon, J. B. & Schutze, D. G.) Vol. 7 261–289; https://doi.org/10.2136/sssabookser7.c8 (John Wiley & Sons, 2002).Hanada, N. et al. Electrochemical charge and discharge properties for the formation of magnesium and aluminum hydrides. J. Alloys Comp. 509, S584–S587 (2011).Article 
CAS 

Google Scholar 
Suárez–Alcántara, K., Tena–Garcia, J. R. & Guerrero–Ortiz, R. Alanates, a comprehensive review. Materials 12, 2724 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wagman, D. D. et al. The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Supplement 2 (1982).Schweitzer, G. K. & Pesterfield, L. L. The Aqueous Chemistry of the Elements (Oxford University Press, 2010).Speight, J. Lange’s handbook of chemistry. 17th Edition (McGraw–Hill Education, 2017).Bard, A. J., Parsons, R. & Jordan, J. Standard potentials in aqueous solution (Marcel Dekker Inc., 1985).Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).Article 
CAS 

Google Scholar 
Haynes, W. M. CRC handbook of chemistry and physics. 95th edition (CRC Press, 2016).Baes, C. F., & Mesmer, R. E. Hydrolysis of cations (John Wiley & Sons, 1976).Smith, R. M. & Martell, A. E. Critical Stability Constants. Inorganic Complexes. Vol. 4 (Plenum Press, 1976).Shafran, K. L. & Perry, C. C. A systematic investigation of aluminium ion speciation at high temperature. Part. 1. Solution studies. Dalton Trans. 12, 2098–2105 (2005).Article 

Google Scholar 
Yang, W., Qian, Z., Lu, B., Zhang, J. & Bi, S. Density functional theory study and kinetic analysis of the formation mechanism of Al30O8(OH)56(H2O)2618+ (Al30) in aqueous solution. Geochim. Cosmochim. Acta 74, 1220–1229 (2010).Article 

Google Scholar 
Bi, S. P., Yang, X. D., Zhang, F. P., Wang, X. L. & Zou, G. W. Analytical methodologies for aluminium speciation in environmental and biological samples–a review. Fresenius’ J. Anal. Chem. 370, 984–996 (2001).Article 
CAS 
PubMed 

Google Scholar 
Povar, I. & Rusu, V. Aluminium heterogeneous speciation in natural waters. Can. J. Chem. 90, 326–332 (2012).Article 
CAS 

Google Scholar 
Perry, C. C. & Shafran, K. L. The systematic study of aluminium speciation in medium concentrated aqueous solutions. J. Inorg. Biochem. 87, 115–124 (2001).Article 
CAS 
PubMed 

Google Scholar 
Shafran, K., Deschaume, O. & Perry, C. C. High‐Temperature Speciation Studies of Al‐Ion Hydrolysis. Adv. Eng. Mater. 6, 836–839 (2004).Article 
CAS 

Google Scholar 
Tagirov, B. & Schott, J. Aluminum speciation in crustal fluids revisited. Geochim. Cosmochim. Acta 65, 3965–3992 (2001).Article 
CAS 

Google Scholar 
Duffield, J. R. et al. Low molecular mass aluminum complex speciation in biofluids. J. Coord. Chem 23, 277–290 (1991).Article 
CAS 

Google Scholar 
Wang, W., Yang, H., Wang, X., Jiang, J. & Zhu, W. Factors effecting aluminum speciation in drinking water by laboratory research. J. Env. Sci. 22, 47–55 (2010).Article 
CAS 

Google Scholar 
Harris, W. R. et al. Speciation of aluminum in biological systems. J. Tox. Env. Health Part A 48, 543–568 (1996).CAS 

Google Scholar 
Schmalholz, S. M., Moulas, E., Plümper, O., Myasnikov, A. V. & Podladchikov, Y. Y. 2D hydro‐mechanical‐chemical modeling of (de) hydration reactions in deforming heterogeneous rock: The periclase‐brucite model reaction. Geochem. Geophys. Geosyst. 21, e2020GC009351 (2020).Article 
CAS 

Google Scholar 
Song, M. et al. Recent advances of magnesium hydride as an energy storage material. J. Mater. Sci. Tech. 149, 99–111 (2023).Article 
CAS 

Google Scholar 
Nikolaychuk, P. A. The revised Pourbaix diagram for silicon. Silicon 6, 109–116 (2014).Article 
CAS 

Google Scholar 
Birsoy, R. Formation of sepiolite–palygorskite and related minerals from solution. Clays Clay Miner 50, 736–745 (2002).Article 
CAS 

Google Scholar 
Ligny, D. D. & Navrotsky, A. Energetics of kaolin polymorphs. Am. Miner. 84, 506–516 (1999).Article 

Google Scholar 
Anovitz, L. M., Perkins, D. & Essene, E. J. Metastability in near–surface rocks of minerals in the system Al2O3–SiO2–H2O. Clays Clay Miner 39, 225–233 (1991).Article 
CAS 

Google Scholar 
El–Shazly, A. E. D. K. On the thermodynamic data of kaolinite. Am. Miner. 80, 1048–1053 (1995).Article 

Google Scholar 
Bowen, N. L. & Tuttle, O. F. The system MgO—SiO2—H2O. Geol. Soc. Am. Bull. 60, 439–460 (1949).Article 
CAS 

Google Scholar 
Evans, B. W. The serpentinite multisystem revisited: chrysotile is metastable. Int. Geol. Rev. 46, 479–506 (2004).Article 

Google Scholar 
Hilairet, N., Daniel, I. & Reynard, B. P–V equations of state and the relative stabilities of serpentine varieties. Phys. Chem. Miner. 33, 629–637 (2006).Article 
CAS 

Google Scholar 
O’Hanley, D. S., Chernosky, J. V. & Wicks, F. J. The stability of lizardite and chrysotile. Can. Miner. 27, 483–493 (1989).
Google Scholar 
Deltombe, E., de Zoubov, N., Pourbaix, M. Atlas d’equilibres electrochimiques (Gauthier–Villars, 1963).Thompson, W. T., Kaye, M. H., Bale, C. W., & Pelton, A. D. Pourbaix diagrams for multielement systems. In: Uhlig’s corrosion handbook. (ed Revie, R. W.) Vol. 3 103–109 (John Wiley & Sons, 2011).Kuznetsova, A., Burleigh, T. D., Zhukov, V., Blachere, J. & Yates, J. T. Electrochemical evaluation of a new type of corrosion passivation layer: Artificially produced Al2O3 films on Aluminum. Langmuir 14, 2502–2507 (1998).Article 
CAS 

Google Scholar 
Díaz, B. et al. Low–temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: surface and electrochemical analysis. Cor. Sci 53, 2168–2175 (2011).Article 

Google Scholar 
Abdulagatov, A. I. et al. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl. Mater. Interf 3, 4593–4601 (2011).Article 
CAS 

Google Scholar 
Thyagatur, A. et al. Assessment of thermodynamic stability of sapphire in eutectic molten chloride environment. J. Am. Ceram. Soc 105, 3647–3653 (2022).Article 
CAS 

Google Scholar 
Chang, F., Levy, M., Jackman, B. & Nowak, W. B. Assessment of corrosion–resistant coatings for a depleted uranium–0.75 titanium alloy. Surf. Coat. Tech. 48, 31–39 (1991).Article 
CAS 

Google Scholar 
Yi, X., Yamauchi, A., Kurokawa, K. & Akiyama, T. Corrosion of combustion–synthesized β–SiAlONs in supercritical water. Cor. Sci 56, 153–157 (2012).Article 
CAS 

Google Scholar 
Guo, S. et al. Effects of flow, Si inhibition, and concurrent corrosion of dissimilar metals on the corrosion of aluminium in the environment following a loss–of–coolant accident. Cor. Sci 128, 100–109 (2017).Article 
CAS 

Google Scholar 
Polunin, A. V. et al. Mechanical and anticorrosive properties of oxide layers formed by PEO on wrought 1560 Al–Mg alloy: The effect of electric current parameters. In: AIP Conference Proceedings. Proceedings of the International Conference on the Physics and Technology of Advanced Materials (PTAM–2021) (eds Mulyukov, R. R., Nazarov, A. A. & Imayev, R. M.) Vol. 2533 020029; https://doi.org/10.1063/5.0098844 (AIP Publishing LLC, 2022).Polunin, A. V. et al. Influence of nanoparticle additions to the electrolyte on the structure, composition and corrosion resistance of oxide layers formed by PEO on cast Mg alloy. In: Journal of Physics: Conference Series. 17th International Scientific and Technical Conference Rapid Solidification Materials and Coatings (eds Lozovan, A. A. et al.) Vol. 1713 012036; https://doi.org/10.1088/1742-6596/1713/1/012036 (IOP Publishing, 2020).Chen, F., Zhou, H., Yao, B., Qin, Z. & Zhang, Q. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surf. Coat. Tech. 201, 4905–4908 (2007).Article 
CAS 

Google Scholar 
Zheng, L. et al. Ablation behaviour and mechanism of Mg–modified ZrC–SiC composite in plasma ablation flame. Cor. Sci. 206, 110523 (2022).Article 
CAS 

Google Scholar 
Gwoździk, M. The defects of oxide layers formed on 10CrMo9–10 steel operated for 200,000 h at an elevated temperature. Arch. Metal. Mater. 61, 987–992 (2016).Article 

Google Scholar 
Gwoździk, M. & Nitkiewicz, Z. Studies on the adhesion of oxide layer formed on X10CrMoVNb9–1 steel. Arch. Civ. Mech. Eng. 14, 335–341 (2014).Article 

Google Scholar 
Oliveira, M., Agathopoulos, S. & Ferreira, J. M. F. Reactions at the interface between Al2O3–SiO2 ceramics with additives of alkaline–earth oxides and liquid Al–Si alloy. J. Mater. Res. 17, 641–647 (2002).Article 
CAS 

Google Scholar 
Thalakkal, A. K., Muthukutti, G. P., Vellingiri, S., Naveen, S. & Madhu, S. Utilization of Silicon Enriched Natural Halloysite Nano Tube: Mechanical, Tribological, and Corrosion Behaviour in Magnesium Matrix Composites. Silicon 15, 4823–4834 (2023).Article 
CAS 

Google Scholar 
van Laar, J. J. Die Schmelz- oder Erstarrungkurven bei binären Systemen, wenn die feste Phase ein Gemisch (amorphe feste Lösung oder Mischkristalle) bei beiden Komponenten ist. Erster Teil. Z. Phys. Chem. 63, 216–253 (1908).Article 

Google Scholar 
van Laar, J. J. Die Schmelz- oder Erstarrungkurven bei binären Systemen, wenn die feste Phase ein Gemisch (amorphe feste Lösung oder Mischkristalle) bei beiden Komponenten ist. Zweiter Teil. Z. Phys. Chem. 64, 257–297 (1908).Article 

Google Scholar 
van Laar, J. J. Beschouwingen over eenige fundamenteele eigenschappen von den thermodynamischen potentiaal. Chemisch Weekblad 6, 1027–1041 (1908).
Google Scholar 
Kaufman, L. & Bernstein, H. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic Press, 1970).Kattner, U. R. The thermodynamic modeling of multicomponent phase equilibria. JOM: J. Miner. Met. Mater. Soc. 49, 14–19 (1997).Article 
CAS 

Google Scholar 
Lukas, H. L. & Fries, S. G. & Sundman, B. Computational Thermodynamics: The CALPHAD Method (Cambridge University Press, 2007).Campbell, F. C. Phase Diagrams: Understanding the Basics (ASM International, 2012).Soustelle, M. Thermodynamic Modeling of Solid Phases (John Wiley & Sons, 2015).Yaws, C. L. Handbook of Thermodynamic Diagrams, Inorganic Compounds and Elements. Vol. 4 (Gulf Professional Publishing, 1996).Dinsdale, A. T. SGTE data for pure elements. Calphad 15, 317–425 (1991).Article 
CAS 

Google Scholar 
Scatchard, G. & Hamer, W. J. The application of equations for the chemical potentials to partially miscible solutions. J. Am. Chem. Soc. 57, 1805–1809 (1935).Article 
CAS 

Google Scholar 
Scatchard, G. & Hamer, W. J. The application of equations for the chemical potentials to equilibria between solid solution and liquid solution. J. Am. Chem. Soc. 57, 1809–1811 (1935).Article 
CAS 

Google Scholar 
Scatchard, G. Equilibria in non-electrolyte solutions in relation to the vapor pressures and densities of the components. Chem. Rev. 8, 321–333 (1931).Article 
CAS 

Google Scholar 
Scatchard, G. Equilibrium in non-electrolyte mixtures. Chem. Rev. 44, 7–35 (1949).Article 
CAS 
PubMed 

Google Scholar 
Scatchard, G. Excess free energy and related properties of solutions containing Electrolytes. J. Am. Chem. Soc. 90, 3124–3127 (1968).Article 
CAS 

Google Scholar 
Thomson, W. On an absolute thermometric Scale founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s Observations. Proc. Cambridge Phil. Soc. Math. Phys. Sci. 1, 66–71 (1843).
Google Scholar 
Cambridge Philosophical Society. Lond. Edinb. Dubl. Phil. Mag. J. Sci. Third Ser. 33, 309 – 317(1848)Horstmann, A. Theorie der dissociation. Justus Liebig’s Ann. Chem. Pharm 170, 192–210 (1873).Article 

Google Scholar 
Horstmann, A. Ueber ein dissociationproblem. Verhandlungen des Naturhistorisch-medizinischen Vereins zu Heidelberg. Neue Folge 1, 465–469 (1877).
Google Scholar 
Hildebrand, J. H. Solubility. XII. Regular solutions. J. Am. Chem. Soc. 51, 66–80 (1929).Article 
CAS 

Google Scholar 
Lewis, G. N. The development and application of a general equation for free energy and physico-chemical equilibrium. Proc. Am. Acad. Arts Sci. 35, 1–38 (1899).Article 

Google Scholar 
Lewis, G. N. Outlines of a new system of thermodynamic chemistry. Proc. Am. Acad. Arts Sci. 43, 257–294 (1907).Article 

Google Scholar 
Lewis, G. N. The osmotic pressure of concentrated solutions, and the laws of the perfect solution. J. Am. Chem. Soc. 30, 668–683 (1908).Article 
CAS 

Google Scholar 
Wohl, K. Thermodynamic evaluation of binary and ternary liquid systems. Trans. Am. Inst. Chem. Eng. 42, 215–249 (1946).CAS 

Google Scholar 
Wohl, K. Thermodynamic evaluation of binary and ternary liquid systems. Chem. Eng. Prog. 49, 218–219 (1953).
Google Scholar 
Helfrich, G. & Wood, B. Subregular model for multicomponent solutions. Am. Miner. 74, 1016–1022 (1989).
Google Scholar 
Hwang, C.-A., Holste, J. C., Hall, K. R. & Mansoori, G. A. A simple relation to predict or to correlate the excess functions of multicomponent mixtures. Fluid Phase Eq. 62, 173–189 (1991).Article 
CAS 

Google Scholar 
Mukhopadhyay, B., Basu, S. & Holdaway, M. J. A discussion of Margules-type formulations for multicomponent solutions with a generalized approach. Geochim. Cosmochim. Acta 57, 277–283 (1993).Article 
CAS 

Google Scholar 
Acree, W. E. Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochim. Acta 198, 71–79 (1992).Article 
CAS 

Google Scholar 
Bertrand, G. L., Acree, W. E. & Burchfield, T. E. Thermochemical excess properties of multicomponent systems: representation and estimation from binary mixing data. J. Sol. Chem. 12, 327–346 (1983).Article 
CAS 

Google Scholar 
Bale, C. W. & Pelton, A. D. Mathematical representation of thermodynamic properties in binary systems and solution of Gibbs-Duhem Equation. Metal. Mater. Trans. 5, 2323–2337 (1974).Article 
CAS 

Google Scholar 
Blander, M. & Pelton, A. D. Thermodynamic analysis of binary liquid silicates and prediction of ternary solution properties by modified quasichemical equations. Geochim. Cosmochim. Acta 51, 85–95 (1987).Article 
CAS 

Google Scholar 
Campbell, S. W. An expression for GE for use in the reduction of ternary vapor-liquid equilibrium data. Fluid Phase Eq. 74, 35–46 (1992).Article 
CAS 

Google Scholar 
Chen, S.-L., Kao, C. R. & Chang, Y. A. A generalized quasi-chemical model for ordered multi-component, multi-sublattice intermetallic compounds with anti-structure defects. Intermetallics 3, 233–242 (1995).Article 
CAS 

Google Scholar 
Cheng, W. & Ganguly, J. Some aspects of multicomponent excess free energy models with subregular binaries. Geochim. Cosmochim. Acta 58, 3763–3767 (1994).Article 
CAS 

Google Scholar 
Fei, Y., Saxena, S. K. & Eriksson, G. Some binary and ternary silicate solution models. Contr. Miner. Petr. 2, 221–229 (1986).Article 

Google Scholar 
Ganguly, J. Thermodynamic modelling of solid solutions. In: European Mineralogical Union Notes in Mineralogy. Solid Solutions in Silicate and Oxide Systems. (ed Geiger, C. A.) Vol. 3 37–69; https://doi.org/10.1180/EMU-notes.3.3 (European Mineralogical Union, 2001).Harvig, H. An extended version of the regular solution model for stoichiometric phases and ionic melts. Acta Chem. Scand. 25, 3199–3204 (1971).Article 
CAS 

Google Scholar 
Jackson, S. L. Extension of Wohl’s ternary asymmetric solution model to four and n components. Am. Miner 74, 14–17 (1989).CAS 

Google Scholar 
Keller, L. M., de Capitani, C. & Abart, R. A quaternary solution model for white micas based on natural coexisting phengite–paragonite pairs. J. Petr 46, 2129–2144 (2005).Article 
CAS 

Google Scholar 
Marsh, K. N. A general method for calculating the excess Gibbs free energy from isothermal vapour-liquid equilibria. J. Chem. Therm. 9, 719–724 (1977).Article 
CAS 

Google Scholar 
Peng, D.-Y. Extending the Van Laar model to multicomponent systems. Open Therm. J. 4, 129–140 (2010).CAS 

Google Scholar 
Saulov, D. On the multicomponent polynomial solution models. Calphad 30, 405–414 (2006).Article 
CAS 

Google Scholar 
Zhang, F., Huang, W. & Chang, Y. A. Equivalence of the generalized bond-energy model, the Wagner-Schottky-type model and the compound-energy model for ordered phases. Calphad 21, 337–348 (1997).Article 
CAS 

Google Scholar 
Gorichev, I. G. & Klyushin, N. G. Dependence of standard electrode potentials and free-energies of some oxides on their stoichiometric composition. Russ. J. Phys. Chem. A 45, 615 (1971).
Google Scholar 
Nikolaychuk, P. A. & Tyurin, A. G. Method of estimating the standard Gibbs energies of formation of binary compounds. In: Abstracts of the XVIII International Conference on Chemical Thermodynamics in Russia (RCCT–2011) (eds Pimerzin, A. A., Svetlov, D. A. & Yashkin, S. N.) Vol. 2 16–17; https://doi.org/10.13140/2.1.4999.3922 (Samara State Technical University Publishing, 2011).de Donder, T. L’affinité. Acad. Roy. Belg. Bull. Clas. Sci. 5e Sér. 8, 197–205 (1922).
Google Scholar 
de Donder, T. Affinité. Compt. Rend. Acad. Sci 180, 1334–1337 (1925).
Google Scholar 
de Donder, T. Calcul de l’affinité spécifique. Compt. Rend. Acad. Sci 180, 1922–1924 (1925).
Google Scholar 
Marakushev, A. A. & Bezmen, N. I. Chemical affinity of metals for oxygen and sulfur. Int. Geol. Rev. 13, 1781–1794 (1971).Article 

Google Scholar 
Gibbs, J. W. On the equilibrium of heterogeneous substances. First Part. Trans. Conn. Acad. Arts Sci. 3, 108–248 (1876).
Google Scholar 
Gibbs, J. W. On the equilibrium of heterogeneous substances (concluded). Trans. Conn. Acad. Arts Sci. 3, 343–524 (1876).
Google Scholar 
Roozeboom, H. W. B. Sur les différentes formes de l’équilibre chimique hétérogène. Rec. Trav. Chim. Pays-Bas 6, 262–303 (1887).Article 

Google Scholar 
Roozeboom, H. W. B. Erstarrungspunkte der Mischkrystalle Zweier Stoffe. Umwandlungspunkte vei Mischkrystallen. Z Phys. Chem. Stöch. Verw 30, 385–412 (1899).Article 

Google Scholar 
de Finetti, B. Considerazioni matematiche sull’ereditarietà mendeliana. Metron 6, 3–41 (1926).
Google Scholar 
Faraday, M. Experimental researches in electricity. Seventh Series. Phil. Trans. Roy. Soc. Lond 124, 55–123 (1834).Article 

Google Scholar 
McCarty, C. G. & Vitz, E. pH Paradoxes: demonstrating that it is not true that pH ≡ –log[H+]. J. Chem. Educ. 83, 752 (2006).Article 
CAS 

Google Scholar 
Sørensen, S. P. L. Enzymstudier II. Om Maalingen og Betydningen af Brintionkoncentrationen ved enzymatiske Processer. Meddelelser fra Carlsberg Laboratoriet 8, 1–153 (1909).
Google Scholar 
Sgambato, F., Prozzo, S., Sgambato, E., Sgambato, R. & Milano, L. Il centenario del pH (1909-2009). Ma in medicina, è proprio indispensabile utilizzare i logaritmi negativi per misurare gli idrogenioni? Parte I. It. J. Med 5, 147–155 (2011).Article 

Google Scholar 
Sgambato, F., Prozzo, S., Sgambato, E., Sgambato, R. & Milano, L. Il centenario del pH (1909-2009)-Parte seconda. Ma era proprio necessario sostituire l’equazione di Henderson con quella di Henderson-Hasselbalch? It. J. Med. 5, 215–226 (2011).Article 

Google Scholar 
Henderson, L. J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. 21, 173–179 (1908).Article 
CAS 

Google Scholar 
Henderson, L. J. The theory of neutrality regulation in the animal organism. Am. J. Physiol. 21, 427–448 (1908).Article 

Google Scholar 
Hasselbalch, K. A. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem. Z. Beit. Chem. Physiol. Pathol. 78, 112–144 (1917).
Google Scholar 
Bjerrum, N. Die Theorie der alkalimetrischen und azidimetrischen Titrierungen. In: Sammlung chemischer und chemisch-technischer Vorträge. (ed Enke, F.) Vol. 21 1–128 (Ferdinand Enke, 1914).Burgot, J.-L. Ionic Equilibria in Analytical Chemistry (Springer New York, 2012).Scholz, F. & Kahlert, H., Chemical equilibria in analytical chemistry. The theory of acid-base, complex, precipitation and redox equilibria (Springer Nature, 2019).von Helmholtz, H. Zur Thermodynamik chemicher Vorgänge. Dritter Beitrag. Sitz. Kön. Preuß. Akad. Wiss. Berl. Jan–Mai, 647–665 (1883).Gibbs, J. W. Zur elektrochemischen Thermodynamik. Z. Phys. Chem. Stöch. Verw 3, 159–163 (1889).Article 

Google Scholar 
Scholz, F. Thermodynamics of Electrochemical Reactions. In: Electroanalytical Methods: Guide to Experiments and Applications (eds Scholz, F. et al.) 11–31; https://doi.org/10.1007/978-3-642-02915-8_2 (Springer Berlin Heidelberg, 2010).Nernst, W. Ueber die electromotorischen Kräfte, welche durch den Magnetismus in von einem Wärmestrome durchflossenen Metallplatten geweckt werden. Wied. Ann. Phys. Chem. 31, 760–789 (1887).Article 

Google Scholar 
Nernst, W. Die elektromotorische Wirksamkeit der Ionen. Z. Phys. Chem. Stöch. Verw 4, 129–181 (1889).Article 

Google Scholar 
Nernst, W. Zur Theorie umkehrbarer galvanischer Elemente. Sitz. Kön. Preuß. Akad. Wiss. Berl. Jan–Mai, 83–98 (1889).Peters, R. Ueber Oxydations- und Reduktionsketten und den Einfluss komplexer Ionen auf ihre elektromotorische Kraft. Z. Phys. Chem. Stöch. Verw 26, 193–236 (1898).Article 
CAS 

Google Scholar 
Clark, W. M. The determination of hydrogen ions; an elementary treatise on the hydrogen electrode, indicator and supplementary methods, with an indexed bibliography on applications (Williams and Wilkens, 1920).Clark, W. M. Studies on Oxidation-Reduction. I. Introduction. Publ. Health Rep. 38, 443–455 (1923).Article 
CAS 

Google Scholar 
Clark, W. M. & Cohen, B. Studies on Oxidation-Reduction. II. An Analysis of the Theoretical Relations between Reduction Potentials and pH. Publ. Health Rep 38, 666–683 (1923).Article 
CAS 

Google Scholar 
Michaelis, L. Oxidation-Reduction Potentials (J. B. Lippincott Company, 1930).Kaesche, H. Corrosion of Metals: Physicochemical Principles and Current Problems (Springer Berlin Heidelberg, 2003).Revie, R. & Uhlig, H. Corrosion and corrosion control. An introduction to corrosion science and engineering (John Wiley & Sons, 2008).Delahay, P., Pourbaix, M. & van Rysselberghe, P. Potential – pH diagrams. J. Chem. Educ. 27, 683–688 (1950).Article 
CAS 

Google Scholar 
Kiss, L. Kinetics of electrochemical metal dissolution (Elsevier, 1988).Garrels, R. M. & Christ, C. L. Solutions, Minerals and Equilibria (Harper & Row, 1965).McCafferty, E. Introduction to Corrosion Science (Springer-Verlag New York, 2010).Huang, H.-H. The Eh-pH diagram and its advances. Metals 6, 23 (2016).Article 

Google Scholar 
Natarajan, K. A. Advances in Corrosion Engineering, IISc Bangalore. NPTEL Web Courses http://nptel.ac.in/courses/113108051.Schon, T. & Heidendael, M. Wasserstoffbildung durch Metallkorrosion. In: Berichte des Forschungszentrums Jülich. Vol. 3495 (Institut für Sicherheitsforschung und Reaktortechnik Jülich, 1998).Kinniburgh, D. G. & Cooper, D. M. Predominance and mineral stability diagrams revisited. Env. Sci. Tech 38, 3641–3648 (2004).Article 
CAS 

Google Scholar 
Anderko, A., Sanders, S. J. & Young, R. D. Real-solution stability diagrams: a thermodynamic tool for modeling corrosion in wide temperature and concentration ranges. Corrosion 53, 43–53 (1997).Article 
CAS 

Google Scholar 
Angus, J. C., Lu, B. & Zappia, M. J. Potential-pH diagrams for complex systems. J. Appl. Electr 17, 1–21 (1987).Article 
CAS 

Google Scholar 
Nagypál, I. & Beck, M. T. Diagrams for complete representation of binary mononuclear complex systems. Talanta 29, 473–477 (1982).Article 
PubMed 

Google Scholar 
Pereira, C. F., Alcalde, M., Villegas, R. & Vale, J. Predominance diagrams, a useful tool for the correlation of the precipitation–solubility equilibrium with other ionic equilibria. J. Chem. Educ. 84, 520–525 (2007).Article 
CAS 

Google Scholar 
Anderko, A. & Schuler, P. J. A computational approach to predicting the formation of iron sulfide species using stability diagrams. Comp. Geosci 23, 647–658 (1997).Article 
CAS 

Google Scholar 
Eriksson, G. An algorithm for the computation of aqueous multi-component, multiphase equilibria. Anal. Chim. Acta 112, 375–383 (1979).Article 
CAS 

Google Scholar 
Angus, J. C. & Angus, C. T. Computation of pourbaix diagrams using virtual species: implementation on personal computers. J. Electr. Soc. 132, 1014–1019 (1985).Article 
CAS 

Google Scholar 
Rojas‐Hernández, A., Ramírez, M. T., Ibáñez, J. G. & González, I. Construction of multicomponent Pourbaix diagrams using generalized species. J. Electr. Soc. 138, 365–371 (1991).Article 

Google Scholar 
Liu, H. & Zhang, C. Computation of multi-component E-pH predominance diagrams. Calphad 25, 363–380 (2001).Article 

Google Scholar 
Brook, P. A. A computer method of calculating potential-pH diagrams. Cor. Sci. 11, 389–396 (1971).Article 
CAS 

Google Scholar 
Salhi, R. A Rigorous Calculation Method for Determining Potential-pH Diagrams Part I: Copper in Aqueous Solutions of Various Complexing Agents. Iran. J. Chem. Chem. Eng. 24, 29–39 (2005).CAS 

Google Scholar 
Nikolajtschuk, P. A. Thermodynamische Einschätzung der chemischen und elektrochemischen Stabilität von Siliziden der Übergangsmetalle der vierten Periode (Ernst-Moritz-Arndt-Universität Greifswald, 2019).

Hot Topics

Related Articles