Forging out-of-equilibrium supramolecular gels | Nature Synthesis

van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).Article 
PubMed 

Google Scholar 
della Sala, F., Neri, S., Maiti, S., Chen, J. L. Y. & Prins, L. J. Transient self-assembly of molecular nanostructures driven by chemical fuels. Curr. Opin. Biotechnol. 46, 27–33 (2017).Article 
PubMed 

Google Scholar 
Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).Article 

Google Scholar 
Sharko, A., Livitz, D., De Piccoli, S., Bishop, K. J. M. & Hermans, T. M. Insights into chemically fueled supramolecular polymers. Chem. Rev. 122, 11759–11777 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ranganath, V. A. & Maity, I. Artificial homeostasis systems based on feedback reaction networks: design principles and future promises. Angew. Chem. Int. Ed. 63, e202318134 (2024).Article 
CAS 

Google Scholar 
Leng, Z., Peng, F. & Hao, X. Chemical-fuel-driven assembly in macromolecular science: recent advances and challenges. ChemPlusChem 85, 1190–1199 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bal, S., Ghosh, C., Parvin, P. & Das, D. Temporal self-regulation of mechanical properties via catalytic amyloid polymers of a short peptide. Nano Lett. 23, 9988–9994 (2023).Article 
CAS 
PubMed 

Google Scholar 
van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).Article 
PubMed 

Google Scholar 
Chen, J., Wang, H., Long, F., Bai, S. & Wang, Y. Dynamic supramolecular hydrogels mediated by chemical reactions. Chem. Commun. 59, 14236–14248 (2023).Article 
CAS 

Google Scholar 
Sharma, C., Maity, I. & Walther, A. pH-feedback systems to program autonomous self-assembly and material lifecycles. Chem. Commun. 59, 1125–1144 (2023).Article 
CAS 

Google Scholar 
Wojciechowski, J. P., Martin, A. D. & Thordarson, P. Kinetically controlled lifetimes in redox-responsive transient supramolecular hydrogels. J. Am. Chem. Soc. 140, 2869–2874 (2018).Article 
CAS 
PubMed 

Google Scholar 
Donau, C., Späth, F., Stasi, M., Bergmann, A. M. & Boekhoven, J. Phase transitions in chemically fueled, multiphase complex coacervate droplets. Angew. Chem. Int. Ed. 61, e202211905 (2022).Article 
CAS 

Google Scholar 
Li, S. et al. Regulation of species metabolism in synthetic community systems by environmental pH oscillations. Nat. Commun. 14, 7507 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).Article 
CAS 
PubMed 

Google Scholar 
Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heuser, T., Steppert, A.-K., Molano Lopez, C., Zhu, B. & Walther, A. Generic concept to program the time domain of self-assemblies with a self-regulation mechanism. Nano Lett. 15, 2213–2219 (2015).Article 
CAS 
PubMed 

Google Scholar 
Heuser, T., Weyandt, E. & Walther, A. Biocatalytic feedback-driven temporal programming of self-regulating peptide hydrogels. Angew. Chem. Int. Ed. 54, 13258–13262 (2015).Article 
CAS 

Google Scholar 
Pappas, C. G., Sasselli, I. R. & Ulijn, R. V. Biocatalytic pathway selection in transient tripeptide nanostructures. Angew. Chem. Int. Ed. 54, 8119–8123 (2015).Article 
CAS 

Google Scholar 
Toledano, S., Williams, R. J., Jayawarna, V. & Ulijn, R. V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 128, 1070–1071 (2006).Article 
CAS 
PubMed 

Google Scholar 
Singh, N., Lainer, B., Formon, G. J. M., De Piccoli, S. & Hermans, T. M. Re-programming hydrogel properties using a fuel-driven reaction cycle. J. Am. Chem. Soc. 142, 4083–4087 (2020).Article 
CAS 
PubMed 

Google Scholar 
Singh, N., Lopez-Acosta, A., Formon, G. J. M. & Hermans, T. M. Chemically fueled self-sorted hydrogels. J. Am. Chem. Soc. 144, 410–415 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, M., Creemer, C. N., Reardon, T. J. & Parquette, J. R. Light-driven dissipative self-assembly of a peptide hydrogel. Chem. Commun. 57, 13776–13779 (2021).Article 
CAS 

Google Scholar 
Xu, H. et al. Bioinspired self-resettable hydrogel actuators powered by a chemical fuel. ACS Appl. Mater. Interfaces 14, 43825–43832 (2022).Article 
CAS 
PubMed 

Google Scholar 
Xue, B. et al. Electrically controllable actuators based on supramolecular peptide hydrogels. Adv. Funct. Mater. 26, 9053–9062 (2016).Article 
CAS 

Google Scholar 
Ogden, W. A. & Guan, Z. Redox chemical-fueled dissipative self-assembly of active materials. ChemSystemsChem 2, e1900030 (2020).Article 
CAS 

Google Scholar 
Kubota, R. et al. Force generation by a propagating wave of supramolecular nanofibers. Nat. Commun. 11, 3541 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leira-Iglesias, J., Sorrenti, A., Sato, A., Dunne, P. A. & Hermans, T. M. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem. Commun. 52, 9009–9012 (2016).Article 
CAS 

Google Scholar 
Haque, M. A., Kamita, G., Kurokawa, T., Tsujii, K. & Gong, J. P. Unidirectional alignment of lamellar bilayer in hydrogel: one‐dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 22, 5110–5114 (2010).Article 
CAS 
PubMed 

Google Scholar 
Milani, A. H. et al. Anisotropic pH-responsive hydrogels containing soft or hard rod-like particles assembled using low shear. Chem. Mater. 29, 3100–3110 (2017).Article 
CAS 

Google Scholar 
Franceschini, A., Filippidi, E., Guazzelli, E. & Pine, D. J. Transverse alignment of fibers in a periodically sheared suspension: an absorbing phase transition with a slowly varying control parameter. Phys. Rev. Lett. 107, 250603 (2011).Article 
PubMed 

Google Scholar 
Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lang, X. et al. Mechanosensitive non-equilibrium supramolecular polymerization in closed chemical systems. Nat. Commun. 14, 3084 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abalymov, A., Pinchasik, B.-E., Akasov, R. A., Lomova, M. & Parakhonskiy, B. V. Strategies for anisotropic fibrillar hydrogels: design, cell alignment, and applications in tissue engineering. Biomacromolecules 24, 4532–4552 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wall, B. D. et al. Aligned macroscopic domains of optoelectronic nanostructures prepared via shear-flow assembly of peptide hydrogels. Adv. Mater. 23, 5009–5014 (2011).Article 
CAS 
PubMed 

Google Scholar 
Draper, E. R., Mykhaylyk, O. O. & Adams, D. J. Aligning self-assembled gelators by drying under shear. Chem. Commun. 52, 6934–6937 (2016).Article 
CAS 

Google Scholar 
Pappas, C. G. et al. Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Mater. Horiz. 2, 198–202 (2014).Article 

Google Scholar 
Wang, Y. et al. Switch from intra- to intermolecular H-bonds by ultrasound: induced gelation and distinct nanoscale morphologies. Langmuir 24, 7635–7638 (2008).Article 
CAS 
PubMed 

Google Scholar 
Tsuda, A. et al. Spectroscopic visualization of sound-induced liquid vibrations using a supramolecular nanofibre. Nat. Chem. 2, 977–983 (2010).Article 
CAS 
PubMed 

Google Scholar 
Hotta, Y., Fukushima, S., Motoyanagi, J. & Tsuda, A. Photochromism in sound-induced alignment of a diarylethene supramolecular nanofibre. Chem. Commun. 51, 2790–2793 (2015).Article 
CAS 

Google Scholar 
Miura, R., Ando, Y., Hotta, Y., Nagatani, Y. & Tsuda, A. Acoustic alignment of a supramolecular nanofiber in harmony with the sound of music. ChemPlusChem 79, 516–523 (2014).Article 
CAS 
PubMed 

Google Scholar 
Wallace, M., Cardoso, A. Z., Frith, W. J., Iggo, J. A. & Adams, D. J. Magnetically aligned supramolecular hydrogels. Chemistry 20, 16484–16487 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Löwik, D. W. P. M. et al. A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv. Mater. 19, 1191–1195 (2007).Article 

Google Scholar 
van den Heuvel, M. et al. Patterns of diacetylene-containing peptide amphiphiles using polarization holography. J. Am. Chem. Soc. 131, 15014–15017 (2009).Article 
PubMed 

Google Scholar 
Shklyarevskiy, I. O. et al. Magnetic alignment of self-assembled anthracene organogel fibers. Langmuir 21, 2108–2112 (2005).Article 
CAS 
PubMed 

Google Scholar 
Jung, Y., Kim, H., Cheong, H.-K. & Lim, Y. Magnetic control of self-assembly and disassembly in organic materials. Nat. Commun. 14, 3081 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Patrawalla, N. Y., Raj, R., Nazar, V. & Kishore, V. Magnetic alignment of collagen: principles, methods, applications, and fiber alignment analyses. Tissue Eng. B https://doi.org/10.1089/ten.teb.2023.0222 (2024).Article 

Google Scholar 
Panja, S., Fuentes-Caparrós, A. M., Cross, E. R., Cavalcanti, L. & Adams, D. J. Annealing supramolecular gels by a reaction relay. Chem. Mater. 32, 5264–5271 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Panja, S. & Adams, D. J. Gel to gel transitions by dynamic self-assembly. Chem. Commun. 55, 10154–10157 (2019).Article 
CAS 

Google Scholar 
McAulay, K. et al. Using chirality to influence supramolecular gelation. Chem. Sci. 10, 7801–7806 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jee, E., Bánsági, T., Taylor, A. F. & Pojman, J. A. Temporal control of gelation and polymerization fronts driven by an autocatalytic enzyme reaction. Angew. Chem. Int. Ed. 128, 2167–2171 (2016).Article 

Google Scholar 
Heinen, L., Heuser, T., Steinschulte, A. & Walther, A. Antagonistic enzymes in a biocatalytic pH feedback system program autonomous DNA hydrogel life cycles. Nano Lett. 17, 4989–4995 (2017).Article 
CAS 
PubMed 

Google Scholar 
Adams, D. J. et al. A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5, 1856 (2009).Article 
CAS 

Google Scholar 
Bianco, S., Panja, S. & Adams, D. J. Using rheology to understand transient and dynamic gels. Gels 8, 132 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sonani, R. R. et al. Atomic structures of naphthalene dipeptide micelles unravel mechanisms of assembly and gelation. Cell Rep. Phys. Sci. 5, 101812 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, L. et al. Salt-induced hydrogelation of functionalised-dipeptides at high pH. Chem. Commun. 47, 12071–12073 (2011).Article 
CAS 

Google Scholar 
Förster, S., Konrad, M. & Lindner, P. Shear thinning and orientational ordering of wormlike micelles. Phys. Rev. Lett. 94, 017803 (2005).Article 
PubMed 

Google Scholar 
Mykhaylyk, O. O. Time-resolved polarized light imaging of sheared materials: application to polymer crystallization. Soft Matter 6, 4430–4440 (2010).Article 
CAS 

Google Scholar 
Mykhaylyk, O. O., Warren, N. J., Parnell, A. J., Pfeifer, G. & Laeuger, J. Applications of shear-induced polarized light imaging (SIPLI) technique for mechano-optical rheology of polymers and soft matter materials. J. Polym. Sci. B 54, 2151–2170 (2016).Article 
CAS 

Google Scholar 
Frounfelker, B. D., Kalur, G. C., Cipriano, B. H., Danino, D. & Raghavan, S. R. Persistence of birefringence in sheared solutions of wormlike micelles. Langmuir 25, 167–172 (2009).Article 
CAS 
PubMed 

Google Scholar 
Qin, S. Y., Ding, W. Q., Jiang, Z. W., Lei, X. & Zhang, A. Q. Directing an oligopeptide amphiphile into an aligned nanofiber matrix for elucidating molecular structures. Chem. Commun. 55, 1659–1662 (2019).Article 
CAS 

Google Scholar 
Rubert Pérez, C. M. et al. The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann. Biomed. Eng. 43, 501–514 (2015).Article 
PubMed 

Google Scholar 
Diegelmann, S. R., Hartman, N., Markovic, N. & Tovar, J. D. Synthesis and alignment of discrete polydiacetylene-peptide nanostructures. J. Am. Chem. Soc. 134, 2028–2031 (2012).Article 
CAS 
PubMed 

Google Scholar 
López-Andarias, J. et al. Highly ordered n/p-co-assembled materials with remarkable charge mobilities. J. Am. Chem. Soc. 137, 893–897 (2015).Article 
PubMed 

Google Scholar 
Nygård, K. et al. ForMAX—a beamline for multiscale and multimodal structural characterization of hierarchical materials. J. Synchrotron Radiat. 31, 363–377 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Wojno, S., Fazilati, M., Nypelö, T., Westman, G. & Kádár, R. Phase transitions of cellulose nanocrystal suspensions from nonlinear oscillatory shear. Cellulose 29, 3655–3673 (2022).Article 
CAS 

Google Scholar 
Kádár, R., Fazilati, M. & Nypelö, T. Unexpected microphase transitions in flow towards nematic order of cellulose nanocrystals. Cellulose 27, 2003–2014 (2020).Article 

Google Scholar 
Kádár, R., Spirk, S. & Nypelö, T. Cellulose nanocrystal liquid crystal phases: progress and challenges in characterization using rheology coupled to optics, scattering, and spectroscopy. ACS Nano 15, 7931–7945 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles