Up–down approach for expanding the chemical space of metal–organic frameworks

Making the future. Nat. Synth. 1, 1 (2022).Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).Article 
CAS 
PubMed 

Google Scholar 
Freund, R. et al. The current status of MOF and COF applications. Angew. Chem. Int. Ed. 60, 23975–24001 (2021).Article 
CAS 

Google Scholar 
Banerjee, S., Lollar, C. T., Xiao, Z., Fang, Y. & Zhou, H.-C. Biomedical integration of metal–organic frameworks. Trends Chem. 2, 467–479 (2020).Article 
CAS 

Google Scholar 
Li, A. et al. The launch of a freely accessible MOF CIF collection from the CSD. Matter 4, 1105–1106 (2021).Article 
CAS 

Google Scholar 
Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).Article 
CAS 
PubMed 

Google Scholar 
Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal–organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc 120, 8571–8572 (1998).Article 
CAS 

Google Scholar 
Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).Article 
CAS 

Google Scholar 
Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466–487 (2021).Article 
CAS 

Google Scholar 
Andreo, J. et al. Reticular nanoscience: bottom-up assembly nanotechnology. J. Am. Chem. Soc. 144, 7531–7550 (2022).Article 
CAS 
PubMed 

Google Scholar 
Guillerm, V. et al. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 43, 6141–6172 (2014).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 9, 1745 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bureekaew, S., Balwani, V., Amirjalayer, S. & Schmid, R. Isoreticular isomerism in 4,4-connected paddle-wheel metal–organic frameworks: structural prediction by the reverse topological approach. CrystEngComm 17, 344–352 (2014).Article 

Google Scholar 
Keupp, J. & Schmid, R. TopoFF: MOF structure prediction using specifically optimized blueprints. Faraday Discuss. 211, 79–101 (2018).Article 
CAS 
PubMed 

Google Scholar 
Baburin, I. A., Leoni, S. & Seifert, G. Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: a topological and DFT approach. J. Phys. Chem. B 112, 9437–9443 (2008).Article 
CAS 
PubMed 

Google Scholar 
Lewis, D. W. et al. Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm 11, 2272–2276 (2009).Article 
CAS 

Google Scholar 
Yuan, S. et al. Retrosynthesis of multi-component metal–organic frameworks. Nat. Commun. 9, 808 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ortín-Rubio, B. et al. Net-clipping: an approach to deduce the topology of metal–organic frameworks built with zigzag ligands. J. Am. Chem. Soc. 142, 9135–9140 (2020).Article 
PubMed 

Google Scholar 
Chen, Z., Jiang, H., Li, M., O’Keeffe, M. & Eddaoudi, M. Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks. Chem. Rev. 120, 8039–8065 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bai, Y. et al. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).Article 
CAS 
PubMed 

Google Scholar 
Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).Article 
PubMed 

Google Scholar 
Trickett, C. A. et al. Identification of the strong brønsted acid site in a metal–organic framework solid acid catalyst. Nat. Chem. 11, 170–176 (2019).Article 
CAS 
PubMed 

Google Scholar 
Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. Taxonomy of periodic nets and the design of materials. Phys. Chem. Chem. Phys. 9, 1035–1043 (2007).Article 
CAS 
PubMed 

Google Scholar 
Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014).Article 
CAS 
PubMed 

Google Scholar 
O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).Article 
PubMed 

Google Scholar 
Feng, D. et al. A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J. Am. Chem. Soc. 136, 17714–17717 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).Article 
CAS 
PubMed 

Google Scholar 
Richardson, J. S. Early ribbon drawings of proteins. Nat. Struct. Biol. 7, 624–625 (2000).Article 
CAS 
PubMed 

Google Scholar 
Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).Guillerm, V., Grancha, T., Imaz, I., Juanhuix, J. & Maspoch, D. Zigzag ligands for transversal design in reticular chemistry: unveiling new structural opportunities for metal–organic frameworks. J. Am. Chem. Soc. 140, 10153–10157 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kim, H. et al. Symmetry-guided syntheses of mixed-linker Zr metal–organic frameworks with precise linker locations. Chem. Sci. 10, 5801–5806 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bon, V., Senkovskyy, V., Senkovska, I. & Kaskel, S. Zr(IV) and Hf(IV) based metal–organic frameworks with reo-topology. Chem. Commun. 48, 8407–8409 (2012).Article 
CAS 

Google Scholar 
Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).Article 
CAS 
PubMed 

Google Scholar 
Mondloch, J. E. et al. Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kassie, A. A. et al. Postsynthetic metal exchange in a metal–organic framework assembled from Co(III) diphosphine pincer complexes. Inorg. Chem. 58, 3227–3236 (2019).Article 
CAS 
PubMed 

Google Scholar 
Feng, D. et al. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).Article 
CAS 
PubMed 

Google Scholar 
Materials Studio v 7.0 (Accelrys, 2013).Nguyen, H. T. T. et al. Combining linker design and linker-exchange strategies for the synthesis of a stable large-pore Zr-based metal–organic framework. ACS Appl. Mater. Interfaces 10, 35462–35468 (2018).Article 
CAS 
PubMed 

Google Scholar 
Cheng, S. et al. Charge separation in metal–organic framework enables heterogeneous thiol catalysis. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202300993 (2023).Hu, X. et al. Nanoscale metal–organic frameworks and metal–organic layers with two-photon-excited fluorescence. Inorg. Chem. 59, 4181–4185 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chen, X. et al. Direct observation of modulated radical spin states in metal–organic frameworks by controlled flexibility. J. Am. Chem. Soc. 144, 2685–2693 (2022).Article 
CAS 
PubMed 

Google Scholar 
Roy, S. et al. Electrocatalytic hydrogen evolution from a cobaloxime-based metal–organic framework thin film. J. Am. Chem. Soc. 141, 15942–15950 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, S. et al. A zirconium metal–organic framework with SOC topological net for catalytic peptide bond hydrolysis. Nat. Commun. 13, 1284 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, S. & Yaghi, O. M. ‘Eye’ of the molecule—a viewpoint. Faraday Discuss. 231, 145–149 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, T. C. et al. Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc. 137, 3585–3591 (2015).Article 
CAS 
PubMed 

Google Scholar 
Lin, Q. et al. New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137, 2235–2238 (2015).Article 
CAS 
PubMed 

Google Scholar 
Gong, X. et al. Metal–organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem. Int. Ed. 59, 5326–5331 (2020).Article 
CAS 

Google Scholar 
Choi, E.-Y. et al. Pillared porphyrin homologous series: intergrowth in metal−organic frameworks. Inorg. Chem. 48, 426–428 (2009).Article 
CAS 
PubMed 

Google Scholar 
Barsukova, M. et al. Face-directed assembly of tailored isoreticular MOFs using centring structure-directing agents. Nat. Synth. 3, 33–46 (2024).Article 

Google Scholar 
Ma, J., Kalenak, A. P., Wong-Foy, A. G. & Matzger, A. J. Rapid guest exchange and ultra-low surface tension solvents optimize metal–organic framework activation. Angew. Chem. Int. Ed. 56, 14618–14621 (2017).Article 
CAS 

Google Scholar 
Yu, F., Hu, B.-Q. & Li, B. A zirconium–organic framework incorporating with amino and sulfoxide groups. Inorg. Chem. Commun. 107, 107484 (2019).Article 
CAS 

Google Scholar 
Deria, P. et al. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs. J. Am. Chem. Soc. 138, 14449–14457 (2016).Article 
CAS 
PubMed 

Google Scholar 
Feng, D. et al. Zirconium–metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51, 10307–10310 (2012).Article 
CAS 

Google Scholar 
Sheng, W., Wang, X., Wang, Y., Chen, S. & Lang, X. Integrating TEMPO into a metal–organic framework for cooperative photocatalysis: selective aerobic oxidation of sulfides. ACS Catal. 12, 11078–11088 (2022).Article 
CAS 

Google Scholar 
Valverde, A. et al. Designing metal-chelator-like traps by encoding amino acids in zirconium-based metal–organic frameworks. Chem. Mater. 34, 9666–9684 (2022).Article 
CAS 

Google Scholar 
Li, X.-M., Wang, Y., Mu, Y., Gao, J. & Zeng, L. Oriented construction of efficient intrinsic proton transport pathways in MOF-808. J. Mater. Chem. A 10, 18592–18597 (2022).Article 
CAS 

Google Scholar 
Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012).Article 
CAS 

Google Scholar 
Colón, Y. J., Gómez-Gualdrón, D. A. & Snurr, R. Q. Topologically guided, automated construction of metal–organic frameworks and their evaluation for energy-related applications. Cryst. Growth Des. 17, 5801–5810 (2017).Article 

Google Scholar 
Moghadam, P. Z., Chung, Y. G. & Snurr, R. Q. Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9, 121–133 (2024).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles