Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations

Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).Article 
CAS 
PubMed 

Google Scholar 
Shearer, J., Castro, J. L., Lawson, A. D. G., MacCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y., Rosenkranz, C., Hirte, S. & Kirchmair, J. Ring systems in natural products: structural diversity, physicochemical properties, and coverage by synthetic compounds. Nat. Prod. Rep. 39, 1544–1556 (2022).Article 
CAS 
PubMed 

Google Scholar 
Stepan, A. F. et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J. Med. Chem. 55, 3414–3424 (2012).Article 
CAS 
PubMed 

Google Scholar 
Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).Article 
CAS 
PubMed 

Google Scholar 
Locke, G. M., Bernhard, S. S. R. & Senge, M. O. Nonconjugated hydrocarbons as rigid-linear motifs: isosteres for material sciences and bioorganic and medicinal chemistry. Chem. Eur. J. 25, 4590–4647 (2019).Article 
CAS 
PubMed 

Google Scholar 
Macreadie, L. K., Idrees, K. B., Smoljan, C. S. & Farha, O. K. Expanding linker dimensionality in metal-organic frameworks for sub-Ångstrom pore control for separation applications. Angew. Chem. Int. Ed. 62, e202304094 (2023).Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kanazawa, J. & Uchiyama, M. Recent advances in the synthetic chemistry of bicyclo[1.1.1]pentane. Synlett 30, 1–11 (2019).Article 
CAS 

Google Scholar 
Ma, X. & Pham, L. N. Selected topics in the syntheses of bicyclo[1.1.1]pentane (BCP) analogues. Asian J. Org. Chem. 9, 8–22 (2020).Article 
CAS 

Google Scholar 
He, F.-S., Xie, S., Yao, Y. & Wu, J. Recent advances in the applications of [1.1.1]propellane in organic synthesis. Chin. Chem. Lett. 31, 3065–3072 (2020).Anderson, J. M., Measom, N. D., Murphy, J. A. & Poole, D. L. Bridge functionalisation of bicyclo[1.1.1]pentane derivatives. Angew. Chem. Int. Ed. 60, 24754–24769 (2021).Article 
CAS 

Google Scholar 
Shire, B. R. & Anderson, E. A. Conquering the synthesis and functionalization of bicyclo[1.1.1]pentanes. JACS Au 3, 1539–1553 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bellotti, P. & Glorius, F. Strain-release photocatalysis. J. Am. Chem. Soc. 145, 20716–20732 (2023).Article 
CAS 
PubMed 

Google Scholar 
Nicolaou, K. C. et al. Synthesis and biopharmaceutical evaluation of imatinib analogues featuring unusual structural motifs. Chem. Med. Chem. 11, 31–37 (2016).Article 
CAS 
PubMed 

Google Scholar 
Measom, N. D. et al. Investigation of a bicyclo[1.1.1]pentane as a phenyl replacement within an LpPLA2 inhibitor. ACS Med. Chem. Lett. 8, 43–48 (2017).Article 
CAS 
PubMed 

Google Scholar 
Goh, Y. L., Cui, Y. T., Pendharkar, V. & Adsool, V. A. Toward resolving the resveratrol conundrum: synthesis and in vivo pharmacokinetic evaluation of BCP–resveratrol. ACS Med. Chem. Lett. 8, 516–520 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pu, Q. et al. Discovery of potent and orally available bicyclo[1.1.1]pentane-derived indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors. ACS Med. Chem. Lett. 11, 1548–1554 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mikhailiuk, P. K. et al. Conformationally rigid trifluoromethyl-substituted α-amino acid designed for peptide structure analysis by solid-state 19F NMR spectroscopy. Angew. Chem. Int. Ed. 45, 5659–5661 (2006).Article 
CAS 

Google Scholar 
Kokhan, S. O. et al. Design, synthesis, and application of an optimized monofluorinated aliphatic label for peptide studies by solid-state 19F NMR spectroscopy. Angew. Chem. Int. Ed. 55, 14788–14792 (2016).Article 
CAS 

Google Scholar 
Mykhailiuk, P. K., Voievoda, N. M., Afonin, S., Ulrich, A. S. & Komarov, I. V. An optimized protocol for the multigram synthesis of 3-(trifluoromethyl)bicyclo[1.1.1]pent-1-ylglycine (CF3-Bpg). J. Fluorine Chem. 131, 217–220 (2010).Article 
CAS 

Google Scholar 
Yang, B. et al. On-surface synthesis of polyphenylene wires comprising rigid aliphatic bicyclo[1.1.1]pentane isolator units. Angew. Chem. Int. Ed. 62, e202218211 (2023).Article 
CAS 

Google Scholar 
Grover, N. et al. Bicyclo[1.1.1]pentane embedded in porphyrinoids. Angew. Chem. Int. Ed. 62, e202302771 (2023).Article 
CAS 

Google Scholar 
Ma, X., Han, Y. & Bennett, D. J. Selective synthesis of 1-dialkylamino-2-alkylbicyclo-[1.1.1]pentanes. Org. Lett. 22, 9133–9138 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhao, J.-X. et al. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: long–sought-after mimetics for ortho/meta-substituted arenes. Proc. Natl Acad. Sci. USA 118, e2108881118 (2020).Article 

Google Scholar 
Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, X., Sloman, D. L., Han, Y. & Bennett, D. J. A selective synthesis of 2,2-difluorobicyclo[1.1.1]pentane analogues: ‘BCP-F2’. Org. Lett. 21, 7199–7203 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bychek, R. M. et al. Difluoro-substituted bicyclo[1.1.1]pentanes for medicinal chemistry: design, synthesis, and characterization. J. Org. Chem. 84, 15106–15117 (2019).Article 
CAS 
PubMed 

Google Scholar 
Anderson, J. M., Measom, N. D., Murphy, J. A. & Poole, D. L. Bridge heteroarylation of bicyclo[1.1.1]pentane derivatives. Org. Lett. 25, 2053–2057 (2023).Article 
CAS 
PubMed 

Google Scholar 
Bychek, R. & Mykhailiuk, P. K. A practical and scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes. Angew. Chem. Int. Ed. 61, e202205103 (2022).Article 
CAS 

Google Scholar 
Garry, O. L. et al. Rapid access to 2-substituted bicyclo[1.1.1]pentanes. J. Am. Chem. Soc. 145, 3092–3100 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wright, B. A. et al. Skeletal editing approach to bridge-functionalized bicyclo[1.1.1]pentanes from azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lopchuk, J. M. et al. Strain-release heteroatom functionalization: development, scope, and stereospecificity. J. Am. Chem. Soc. 139, 3209–3226 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lovering, F., Bikker, J. & Humblet, C. Escape from Flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).Article 
CAS 
PubMed 

Google Scholar 
Lovering, F. Escape from Flatland 2: complexity and promiscuity. Med. Chem. Commun. 4, 515–519 (2013).Article 
CAS 

Google Scholar 
Kaszynski, P., McMurdie, N. D. & Michl, J. Synthesis of doubly bridgehead substituted bicyclo[1.1.1]pentanes. Radical transformations of bridgehead halides and carboxylic acids. J. Org. Chem. 56, 307–316 (1991).Article 
CAS 

Google Scholar 
Messner, M., Kozhushkov, S. I. & de Meijere, A. Nickel- and palladium-catalyzed cross-coupling reactions at the bridgehead of bicyclo[1.1.1]pentane derivatives—a convenient access to liquid crystalline compounds containing bicyclo[1.1.1]pentane moieties. Eur. J. Org. Chem. 2000, 1137–1155 (2000).Kaszynski, P., Friedli, A. C. & Michl, J. Toward a molecular-size tinkertoy construction set. Preparation of terminally functionalized [n]staffanes from [1.1.1]propellane. J. Am. Chem. Soc. 114, 601–620 (1992).Article 
CAS 

Google Scholar 
Wiberg, K. B. & McMurdie, N. Formation and reactions of bicyclo[1.1.1]pentyl-1 cations. J. Am. Chem. Soc. 116, 11990–11998 (1994).Article 
CAS 

Google Scholar 
Vyas, V. K., Clarkson, G. J. & Wills, M. Enantioselective synthesis of bicyclopentane-containing alcohols via asymmetric transfer hydrogenation. Org. Lett. 23, 3179–3183 (2021).Article 
CAS 
PubMed 

Google Scholar 
Dron, P. I. et al. Bulk inclusions of pyridazine-based molecular rotors in tris(o-phenylenedioxy)cyclotriphosphazene (TPP). Adv. Funct. Mater. 26, 5718–5732 (2016).Article 
CAS 

Google Scholar 
Kaleta, J., Nečas, M. & Mazal, C. 1,3-Diethynylbicyclo[1.1.1]pentane, a useful molecular building block. Eur. J. Org. Chem. 25, 4783–4796 (2012).Article 

Google Scholar 
Caputo, D. F. J. et al. Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes. Chem. Sci. 9, 5295–5390 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wong, M. L. J., Mousseau, J. J., Mansfield, S. J. & Anderson, E. A. Synthesis of enantioenriched α-chiral bicyclo[1.1.1]pentanes. Org. Lett. 21, 2408–2411 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pickford, H. D. et al. Twofold radical-based synthesis of N,C-difunctionalized bicyclo[1.1.1]pentanes. J. Am. Chem. Soc. 143, 9729–9736 (2021).Article 
CAS 
PubMed 

Google Scholar 
Nugent, J. et al. A general route to bicyclo[1.1.1]pentanes through photoredox catalysis. ACS Catal. 9, 9568–9574 (2019).Article 
CAS 

Google Scholar 
Yen-Pon, E. et al. On-DNA hydroalkylation to introduce diverse bicyclo[1.1.1]pentanes and abundant alkyls via halogen atom transfer. J. Am. Chem. Soc. 144, 12184–12191 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Adcock, J. L. & Gakh, A. A. Nucleophilic substitution in 1-substituted 3-iodobicyclo[1.1.1]pentanes. A new synthetic route to functionalized bicyclo[1.1.1]pentane derivatives. J. Org. Chem. 57, 6206–6210 (1992).Article 
CAS 

Google Scholar 
Krishnan, A., Robert, J., Qinhua, P. & Duane, K. Difluoromethyl iodo compounds and methods. WO2021167987A1 (2021).Deng, G., Yao, Y., Liu, X., Li, Z., Dai, M., Huan, R., Tang, R., Huang, D., Zhang, Q., Wang, Y., Ye, Y. & Peng, J. Preparation method for bicyclic compound and application as antifungal agent. WO2022206862A1 (2022).Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 62, 5276–5297 (2019).Article 
CAS 
PubMed 

Google Scholar 
Di Martino, R. M. C., Maxwell, B. D. & Pirali, T. Deuterium in drug discovery: progress, opportunities and challenges. Nat. Rev. Drug. Discov. 22, 562–584 (2023).Article 
PubMed 

Google Scholar 
Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).Article 
CAS 
PubMed 

Google Scholar 
Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).Article 
CAS 
PubMed 

Google Scholar 
Inoue, M., Sumii, Y. & Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5, 10633–10640 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levterov, V. V., Panasyuk, Y., Pivnytska, V. O. & Mykhailiuk, P. K. Water-soluble non-classical benzene mimetics. Angew. Chem. Int. Ed. 59, 7161–7167 (2020).Article 
CAS 

Google Scholar 
Levterov, V. V. et al. 2-Oxabicyclo[2.1.1]hexanes: synthesis, properties and validation as bioisosteres of ortho- and meta-Benzenes. Angew. Chem. Int. Ed. 63, e202319831 (2024).Article 
CAS 

Google Scholar 
Denisenko, A., Garbuz, P., Voloshchuk, N. M., Holota, Y. & Mykhailiuk, P. K. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat. Chem. 15, 1155–1163 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fominova, K. et al. Oxa-spirocycles: synthesis, properties and applications. Chem. Sci. 12, 11294–11305 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rentería-Gómez, A. et al. General and practical route to diverse 1‑(difluoro)alkyl-3-aryl bicyclo[1.1.1]pentanes enabled by an Fe-catalyzed multicomponent radical cross-coupling reaction. ACS Catal. 12, 11547–11556 (2022).Article 

Google Scholar 
Cuadros, S. et al. A general organophotoredox strategy to difluoroalkyl bicycloalkane (CF2-BCA) hybrid bioisosteres. Angew. Chem. Int. Ed. 62, e202303585 (2023).Article 

Google Scholar 
Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).Article 
CAS 
PubMed 

Google Scholar 
Griller, D. & Ingold, K. U. Free-radical clocks. Acc. Chem. Res. 13, 317–323 (1980).Article 
CAS 

Google Scholar 
Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, J. et al. Cu-catalyzed decarboxylative borylation. ACS Catal. 8, 9537–9542 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kondo, M. et al. Silaboration of [1.1.1]propellane: storable feedstock for bicyclo[1.1.1]pentane derivatives. Angew. Chem. Int. Ed. 59, 1970–1974 (2020).Article 
CAS 

Google Scholar 
Zhang, Q. et al. Decarboxylative borylation of stabilized and activated carbon radicals. Angew. Chem. Int. Ed. 59, 21875–21879 (2020).Article 
CAS 

Google Scholar 
VanHeyst, M. D. et al. Continuous flow-enabled synthesis of bench-stable bicyclo[1.1.1]pentane trifluoroborate salts and their utilization in metallaphotoredox cross-couplings. Org. Lett. 22, 1648–1654 (2020).Article 
CAS 
PubMed 

Google Scholar 
Shelp, R. A. et al. Strain-release 2-azaallyl anion addition/borylation of [1.1.1]propellane: synthesis and functionalization of benzylamine bicyclo[1.1.1]pentyl boronates. Chem. Sci. 12, 7066–7072 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zarate, C. et al. Development of scalable routes to 1‑bicyclo[1.1.1]pentylpyrazoles. Org. Process Res. Dev. 25, 642–647 (2021).Article 
CAS 

Google Scholar 
Barton, L. M., Chen, L., Blackmond, D. G. & Baran, P. S. Electrochemical borylation of carboxylic acids. Proc. Natl Acad. Sci. USA 118, e2109408118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, W. et al. Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alvarez, E. M. et al. O-, N- and C-bicyclopentylation using thianthrenium reagents. Nat. Synth. 2, 548–556 (2023).Article 

Google Scholar 
Bunker, K. D., Sach, N. W., Huang, Q. & Richardson, P. F. Scalable synthesis of 1-bicyclo[1.1.1]pentylamine via a hydrohydrazination reaction. Org. Lett. 13, 4746–4748 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kanazawa, J., Maeda, K. & Uchiyama, M. Radical multicomponent carboamination of [1.1.1]propellane. J. Am. Chem. Soc. 139, 17791–17794 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bär, R. M., Kirschner, S., Nieger, M. & Bräse, S. Alkyl and aryl thiol addition to [1.1.1]propellane: scope and limitations of a fast conjugation reaction. Chem. Eur. J. 24, 1373–1382 (2018).Article 
PubMed 

Google Scholar 
Kraemer, Y. et al. Strain-release pentafluorosulfanylation and tetrafluoro(aryl)sulfanylation of [1.1.1]propellane: reactivity and structural insight. Angew. Chem. Int. Ed. 61, e202211892 (2022).Article 
CAS 

Google Scholar 
Livesley, S. et al. Synthesis of sulfur-substituted bicyclo[1.1.1]pentanes by iodo-sulfenylation of [1.1.1]propellane. Org. Lett. 24, 7015–7020 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pickford, H. D. et al. Rapid and scalable halosulfonylation of strain-release reagents. Angew. Chem. Int. Ed. 62, e202213508 (2023).Article 
CAS 

Google Scholar 
Dong, W., Keess, S. & Molander, G. A. Nickel-mediated alkyl-, acyl-, and sulfonylcyanation of [1.1.1]propellane. Chem. Catalysis 3, 100608 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Makarov, I. S., Brocklehurst, C. E., Karaghiosoff, K., Koch, G. & Knochel, P. Synthesis of bicyclo[1.1.1]pentane bioisosteres of internal alkynes and para-disubstituted benzenes from [1.1.1]propellane. Angew. Chem. Int. Ed. 56, 12774–12777 (2017).Article 
CAS 

Google Scholar 
Shelp, R. A. & Walsh, P. J. Synthesis of BCP benzylamines from 2-azaallyl anions and [1.1.1]propellane. Angew. Chem. Int. Ed. 57, 15857–15861 (2018).Article 
CAS 

Google Scholar 
Trongsiriwat, N. et al. Reactions of 2-aryl-1,3-dithianes and [1.1.1]propellane. Angew. Chem. Int. Ed. 58, 13416–13420 (2019).Article 
CAS 

Google Scholar 
Yu, S., Jing, C., Noble, A. & Aggarwal, V. K. 1,3-Difunctionalizations of [1.1.1]propellane via 1,2-metallate rearrangements of boronate complexes. Angew. Chem. Int. Ed. 59, 3917–3921 (2020).Article 
CAS 

Google Scholar 
Schwärzer, K., Zipse, H., Karaghiosoff, K. & Knochel, P. Highly regioselective addition of allylic zinc halides and various zinc enolates to [1.1.1]propellane. Angew. Chem. Int. Ed. 59, 20235–20241 (2020).Article 

Google Scholar 
Garlets, Z. J. et al. Functionalization of bicyclo[1.1.1]pentanes. Nat. Catal. 3, 351–357 (2020).Article 
CAS 

Google Scholar 
Yu, S., Jing, C., Noble, A. & Aggarwal, V. K. Iridium-catalyzed enantioselective synthesis of α‑chiral bicyclo[1.1.1]pentanes by 1,3-difunctionalization of [1.1.1]propellane. Org. Lett. 22, 5650–5655 (2020).Article 
CAS 
PubMed 

Google Scholar 
Andersen, C. et al. Copper-catalyzed cross-coupling between alkyl (pseudo)halides and bicyclopentyl Grignard reagents. Org. Lett. 22, 6021–6025 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wong, M. L. J., Sterling, A. J., Mousseau, J. J., Duarte, F. & Anderson, E. A. Direct catalytic asymmetric synthesis of α-chiral bicyclo[1.1.1]pentanes. Nat. Commun. 12, 1644 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Polites, V. C., Badir, S. O., Keess, S., Jolit, A. & Molander, G. A. Nickel-catalyzed decarboxylative cross-coupling of bicyclo[1.1.1]pentyl radicals enabled by electron donor-acceptor complex photoactivation. Org. Lett. 23, 4828–4833 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nugent, J., Sterling, A. J., Frank, N., Mousseau, J. J. & Anderson, E. A. Synthesis of α‑quaternary bicyclo[1.1.1]pentanes through synergistic organophotoredox and hydrogen atom transfer catalysis. Org. Lett. 23, 8628–8633 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mousseau, J. J. et al. Automated nanomole-scale reaction screening toward benzoate bioisosteres: a photocatalyzed approach to highly elaborated bicyclo[1.1.1]pentanes. ACS Catal. 12, 600–606 (2022).Article 
CAS 

Google Scholar 
Huang, W., Keess, S. & Molander, G. A. One step synthesis of unsymmetrical 1,3-disubstituted BCP ketones via nickel/photoredoxcatalyzed [1.1.1]propellane multicomponent dicarbofunctionalization. Chem. Sci. 13, 11936–11942 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, W., Keess, S. & Molander, G. A. Dicarbofunctionalization of [1.1.1]propellane enabled by nickel/photoredox dual catalysis: one-step multicomponent strategy for the synthesis of BCP-aryl derivatives. J. Am. Chem. Soc. 144, 12961–12969 (2022).Article 
CAS 
PubMed 

Google Scholar 
Shelp, R., Merchant, R. R., Hughes, J. M. E. & Walsh, P. J. Enantioenriched BCP benzylamine synthesis via metal hydride hydrogen atom transfer/sulfinimine addition to [1.1.1]propellane. Org. Lett. 24, 110–114 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, Q., Li, L., Xu, Q.-L. & Pan, F. Radical acylation of [1.1.1]propellane with aldehydes: synthesis of bicyclo[1.1.1]pentane ketones. Org. Lett. 24, 4292–4297 (2022).Article 
CAS 
PubMed 

Google Scholar 
Huang, W., Keess, S. & Molander, G. A. A general and practical route to functionalized BCP-heteroaryls enabled by photocatalytic multicomponent heteroarylation of [1.1.1]propellane. Angew. Chem. Int. Ed. 62, e202302223 (2023).Article 
CAS 

Google Scholar 
Gao, Y. et al. Visible light-induced synthesis of 1,3-disubstituted bicyclo[1.1.1]pentane ketones via cooperative photoredox and N-heterocyclic carbene catalysis. Green Chem. 25, 3909–3915 (2023).Article 
CAS 

Google Scholar 
Ripenko, V., Vysochyn, D., Klymov, I., Zhersh, S. & Mykhailiuk, P. K. Large-scale synthesis and modifications of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid (BCP). J. Org. Chem. 86, 14061–14068 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, W., Zheng, Y., Keess, S. & Molander, G. A. A general and modular approach to BCP alkylamines via multicomponent difunctionalization of [1.1.1]propellane. J. Am. Chem. Soc. 145, 5363–5369 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hughes, J. M. E., Scarlata, D. A., Chen, A. C.-Y., Burch, J. D. & Gleason, J. L. Aminoalkylation of [1.1.1]propellane enables direct access to high-value 3‑alkylbicyclo[1.1.1]pentan-1-amines. Org. Lett. 21, 6800–6804 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. H., Ruffoni, A., Al-Faiyz, Y. S. S., Sheikh, N. S. & Leonori, D. Divergent strain-release amino-functionalization of [1.1.1]propellane with electrophilic nitrogen-radicals. Angew. Chem. Int. Ed. 59, 8225–8231 (2020).Article 
CAS 

Google Scholar 
Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shin, S., Lee, S., Choi, W., Kim, N. & Hong, S. Visible-light-induced 1,3-aminopyridylation of [1.1.1]propellane with n-aminopyridinium salts. Angew. Chem. Int. Ed. 60, 7873–7879 (2021).Article 
CAS 

Google Scholar 
Livesley, S. et al. Electrophilic activation of [1.1.1]propellane for the synthesis of nitrogen-substituted bicyclo[1.1.1]pentanes. Angew. Chem. Int. Ed. 61, e202111291 (2022).Article 
CAS 

Google Scholar 
Nugent, J. et al. Synthesis of all-carbon disubstituted bicyclo[1.1.1]pentanes by iron-catalyzed Kumada cross-coupling. Angew. Chem. Int. Ed. 59, 11866–11870 (2020).Article 
CAS 

Google Scholar 
Alonso, M. et al. Accelerated synthesis of bicyclo[1.1.1]pentylamines: a high-throughput approach. Org. Lett. 25, 771–776 (2023).Article 
CAS 
PubMed 

Google Scholar 
Davies, O. L., Raventós, J. A. & Walpole, L. A method for the evaluation of analgesic activity using rats. Br. J. Pharmacol Chemother. 1, 255–264 (1946).Seo, E.-J. & Efferth, T. Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget. 7, 16818–16839 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles