Digital Microbe: a genome-informed data integration framework for team science on emerging model organisms

Wetmore, K. M. et al. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. MBio 6, e00306–15 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moore, L. R. & Chisholm, S. W. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol. Oceanogr. 44, 628–638 (1999).Article 
ADS 

Google Scholar 
Sun, J. et al. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 6, e23973 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
González, J. M. et al. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc. Natl. Acad. Sci. USA 105, 8724–8729 (2008).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Leonelli, S. Model Organism. in Encyclopedia of Systems Biology (eds. Dubitzky, W., Wolkenhauer, O., Cho, K.-H. & Yokota, H.) 1398–1401 (Springer New York, 2013).Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 6, 3–6 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 4, 784–798 (2010).Article 
CAS 
PubMed 

Google Scholar 
Munson-McGee, J. H. et al. Decoupling of respiration rates and abundance in marine prokaryoplankton. Nature 612, 764–770 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, H., Uchimiya, M., Gore, J. & Moran, M. A. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc. Natl. Acad. Sci. USA 117, 3656–3662 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nowinski, B. & Moran, M. A. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol 6, 524–532 (2021).Article 
CAS 
PubMed 

Google Scholar 
Schreier, J. E., Smith, C. B., Ioerger, T. R. & Moran, M. A. A mutant fitness assay identifies bacterial interactions in a model ocean hot spot. Proc. Natl. Acad. Sci. USA 120, e2217200120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Howard, E. C. et al. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652 (2006).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mejia, C. et al. An arrayed transposon library of Ruegeria pomeroyi DSS-3. bioRxiv 2022.09.11.507510, https://doi.org/10.1101/2022.09.11.507510 (2022).Moran, M. A. et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rivers, A. R., Smith, C. B. & Moran, M. A. An updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3. Stand. Genomic Sci. 9, 11 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Galperin, M. Y. et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 49, D274–D281 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).Article 
CAS 
PubMed 

Google Scholar 
Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).Article 
CAS 
PubMed 

Google Scholar 
Christie-Oleza, J. A., Miotello, G. & Armengaud, J. High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade. BMC Genomics 13, 73 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bullock, H. A., Reisch, C. R., Burns, A. S., Moran, M. A. & Whitman, W. B. Regulatory and functional diversity of methylmercaptopropionate coenzyme A ligases from the dimethylsulfoniopropionate demethylation pathway in Ruegeria pomeroyi DSS-3 and other proteobacteria. J. Bacteriol. 196, 1275–1285 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Cunliffe, M. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3. FEMS Microbiol. Ecol. 92 (2016).Sharpe, G. C., Gifford, S. M. & Septer, A. N. A model Roseobacter, Ruegeria pomeroyi DSS-3, employs a diffusible killing mechanism to eliminate competitors. mSystems 5 (2020).Veseli, I. & Cooper, Z. Ruegeria pomeroyi digital microbe databases. Zenodo https://doi.org/10.5281/zenodo.7439166 (2022).Schroer, W. F. et al. Functional annotation and importance of marine bacterial transporters of plankton exometabolites. ISME Communications 3, 1–10 (2023).Article 

Google Scholar 
Landa, M., Burns, A. S., Roth, S. J. & Moran, M. A. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 11, 2677–2690 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ferrer-González, F. X. et al. Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda. ISME Commun 3, 5 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 15, 762–773 (2021).Article 
PubMed 

Google Scholar 
Olofsson, M. et al. Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy. ISME Communications 2, 1–9 (2022).Article 

Google Scholar 
Gralka, M., Pollak, S. & Cordero, O. X. Genome content predicts the carbon catabolic preferences of heterotrophic bacteria. Nat Microbiol 8, 1799–1808 (2023).Article 
CAS 
PubMed 

Google Scholar 
Forchielli, E., Sher, D. & Segrè, D. Metabolic phenotyping of marine heterotrophs on refactored media reveals diverse metabolic adaptations and lifestyle strategies. mSystems 7, e0007022 (2022).Article 
PubMed 

Google Scholar 
Cooper, Z. S. et al. Normalized protein abundance data and protein annotations for proteomic data from laboratory cultures of Ruegeria pomeroyi DSS-3 and Alteromonas macleodii MIT1002 in 2022. https://doi.org/10.26008/1912/bco-dmo.927507.1 (2024).Cooper, Z. S., Gray, L., Rauch, S. & Moran, M. A. Metadata for transcriptomic expression data from cultures of Ruegeria pomeroyi DSS-3 and Alteromonas macleodii MIT1002 grown in defined culture media with either glucose, acetate, or a mix of both as carbon substrates. https://doi.org/10.26008/1912/bco-dmo.916134.1 (2023).Hennon, G. M. M. et al. The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas. ISME J. 12, 520–531 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
López-Pérez, M. et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci. Rep. 2, 696 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Henríquez-Castillo, C. et al. Metaomics unveils the contribution of Alteromonas bacteria to carbon cycling in marine oxygen minimum zones. Frontiers in Marine Science 9 (2022).Mikhailov, V. V., Romanenko, L. A. & Ivanova, E. P. The genus Alteromonas and related Proteobacteria. in The Prokaryotes: A Handbook on the Biology of Bacteria Volume 6: Proteobacteria: Gamma Subclass (eds. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 597–645 (Springer New York, 2006).Koch, H. et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 13, 92–103 (2019).Article 
CAS 
PubMed 

Google Scholar 
Baumann, L., Baumann, P., Mandel, M. & Allen, R. D. Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110, 402–429 (1972).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ivanova, E. P. et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie Van Leeuwenhoek 107, 119–132 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ivanova, E. P. et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie Van Leeuwenhoek 103, 877–884 (2013).Article 
CAS 
PubMed 

Google Scholar 
Van Trappen, S., Tan, T.-L., Yang, J., Mergaert, J. & Swings, J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int. J. Syst. Evol. Microbiol. 54, 1157–1163 (2004).Article 
PubMed 

Google Scholar 
López-Pérez, M. & Rodriguez-Valera, F. Pangenome evolution in the marine bacterium Alteromonas. Genome Biol. Evol. 8, 1556–1570 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, I.-M. A. et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 51, D723–D732 (2023).Article 
CAS 
PubMed 

Google Scholar 
Mukherjee, S. et al. Twenty-five years of Genomes OnLine Database (GOLD): data updates and new features in v.9. Nucleic Acids Res. 51, D957–D963 (2023).Article 
CAS 
PubMed 

Google Scholar 
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 49, D10–D17 (2021).Article 
CAS 
PubMed 

Google Scholar 
Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
López-Pérez, M., Gonzaga, A., Ivanova, E. P. & Rodriguez-Valera, F. Genomes of Alteromonas australica, a world apart. BMC Genomics 15, 483 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–51 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).Article 
CAS 
PubMed 

Google Scholar 
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buck, M., Mehrshad, M. & Bertilsson, S. mOTUpan: a robust Bayesian approach to leverage metagenome-assembled genomes for core-genome estimation. NAR Genom Bioinform 4, lqac060 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
DeMers, M. & Braakman, R. Alteromonas Digital Organism Databases. Zenodo https://doi.org/10.5281/zenodo.7517480 (2023).Repeta, D. J. Chapter 2 – Chemical characterization and cycling of dissolved organic matter. in Biogeochemistry of Marine Dissolved Organic Matter (Second Edition) (eds. Hansell, D. A. & Carlson, C. A.) 21–63 (Academic Press, 2015).Kelly, L., Huang, K. H., Ding, H. & Chisholm, S. W. ProPortal: a resource for integrated systems biology of Prochlorococcus and its phage. Nucleic Acids Res. 40, D632–40 (2012).Article 
CAS 
PubMed 

Google Scholar 
Groussman, R. D., Blaskowski, S., Coesel, S. N. & Armbrust, E. V. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 10, 926 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. USA 112, 453–457 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uchimiya, M., Schroer, W., Olofsson, M., Edison, A. S. & Moran, M. A. Diel investments in metabolite production and consumption in a model microbial system. ISME J. 16, 1306–1317 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).Article 
CAS 
PubMed 

Google Scholar 
Gordon, A. & Hannon, G. J. Fastx-toolkit. (2010).Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10 (2021).McKinney, W. Data structures for statistical computing in Python. in Proceedings of the 9th Python in Science Conference. https://doi.org/10.25080/majora-92bf1922-00a (SciPy, 2010).The pandas development team. Pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.7794821 (2023).Waskom, M. Seaborn: statistical data visualization. https://doi.org/10.21105/joss.03021 (The Open Journal, 2021).Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 50, D20–D26 (2022).Article 
CAS 
PubMed 

Google Scholar 
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 
CAS 
PubMed 

Google Scholar 
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rambaut, A. FigTree.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2018).Yu, G. Decorate a ‘ggplot’ with associated information [R package aplot version 0.1.10]. (Comprehensive R Archive Network (CRAN) 2023).Morgan, M. Access the Bioconductor project package repository [R package BiocManager version 1.30.20]. (Comprehensive R Archive Network (CRAN) 2023).Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. A grammar of data manipulation [R package dplyr version 1.1.2]. (Comprehensive R Archive Network (CRAN) 2023).Campitelli, E. Multiple fill and colour scales in ‘ggplot2’ [R package ggnewscale version 0.4.8]. (Comprehensive R Archive Network (CRAN) 2022).Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).Henry, L., Wickham, H. & Chang, W. Ggstance: horizontal ggplot2 components. (Github 2022).Yu, G. Data Integration, Manipulation and Visualization of Phylogenetic Trees. (CRC Press, Taylor & Francis Group, 2022).Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. https://doi.org/10.1002/imt2.56 (2022).Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96 (2020).Article 
PubMed 

Google Scholar 
Yu, G., Lam, T. T.-Y., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. Ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

Google Scholar 
Xu, S. et al. ggtreeExtra: Compact visualization of richly annotated phylogenetic data. https://doi.org/10.1093/molbev/msab166 (2021).Jolly, K. Nationalparkcolors: R package for color themes inspired by National Parks. (Github).Wickham, H. The Split-Apply-Combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).Article 

Google Scholar 
Neuwirth, E. RColorBrewer: ColorBrewer palettes. [R package RColorBrewer version 1.1-3]. (Comprehensive R Archive Network (CRAN) 2022).Wickham, H. & Seidel, D. Scale functions for visualization [R package scales version 1.2.1]. (Comprehensive R Archive Network (CRAN) 2022).Wickham, H., Vaughan, D. & Girlich, M. Tidyr: Tidy messy data [R package tidyr version 1.3.0]. (Comprehensive R Archive Network (CRAN) 2023).Ou, J. Safe color set for color blindness [R package colorBlindness version 0.1.9]. (Comprehensive R Archive Network (CRAN) 2021).Oettinghaus, B. Easyalluvial: Generate alluvial plots with a single line of code [R package version 0.3.1]. (Github 2022).Auguie, B. Miscellaneous functions for ‘grid’ graphics [R package gridExtra version 2.3]. (Comprehensive R Archive Network (CRAN) 2017).O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–45 (2016).Article 
PubMed 

Google Scholar 
DiatOmicBase. https://www.diatomicsbase.bio.ens.psl.eu/.Sajed, T. et al. ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 44, D495–501 (2016).Article 
CAS 
PubMed 

Google Scholar 
Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Galaxy Community. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).Article 

Google Scholar 
Gillespie, J. J. et al. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect. Immun. 79, 4286–4298 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Merchant, N. et al. The iPlant Collaborative: Cyberinfrastructure for enabling data to discovery for the life sciences. PLoS Biol. 14, e1002342 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–6 (2013).Article 
CAS 
PubMed 

Google Scholar 
Olson, R. D. et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 51, D678–D689 (2023).Article 
CAS 
PubMed 

Google Scholar 
Grigoriev, I. V. et al. PhycoCosm, a comparative algal genomics resource. Nucleic Acids Res. 49, D1004–D1011 (2021).Article 
CAS 
PubMed 

Google Scholar 
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
CAS 
PubMed 

Google Scholar 
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karp, P. D. et al. Pathway Tools version 24.0: Integrated software for Pathway/genome informatics and systems biology. arXiv [q-bio.GN] (2015).Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles