Computer vision for kinematic metrics of the drinking task in a pilot study of neurotypical participants

Kwakkel, G., Kollen, B. J., van der Grond, J. & Prevo, A. J. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke 34(9), 2181–2186 (2003).Article 
PubMed 

Google Scholar 
Tsao, C. W. et al. Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation 145(8), e153–e639 (2022).Article 
PubMed 

Google Scholar 
World Health Organization. World Report on Disability 2011 (World Health Organization, 2011).
Google Scholar 
World Health Organization. International Classification of Functioning, Disability, and Health: ICF 2001 (World Health Organization, 2001).
Google Scholar 
Moore, J. L., Raad, J., Ehrlich-Jones, L. & Heinemann, A. W. Development and use of a knowledge translation tool: The rehabilitation measures database. Arch. Phys. Med. Rehabil. 95(1), 197–202 (2014).Article 
PubMed 

Google Scholar 
Alt Murphy, M., Sunnerhagen, K. S., Johnels, B. & Willén, C. Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: A pilot study. J. Neuroeng. Rehabil. 3, 18 (2006).Article 
PubMed 

Google Scholar 
Schwarz, A., Kanzler, C. M., Lambercy, O., Luft, A. R. & Veerbeek, J. M. Systematic review on kinematic assessments of upper limb movements after stroke. Stroke (1970) 50(3), 718–727 (2019).Article 

Google Scholar 
Alt Murphy, M. (eds) Development and validation of upper extremity kinematic movement analysis for people with stroke. Reaching and drinking from a glass (2013).Thrane, G., Sunnerhagen, K. S. & Murphy, M. A. Upper limb kinematics during the first year after stroke: The stroke arm longitudinal study at the University of Gothenburg (SALGOT). J. Neuroeng. Rehabil. 17(1), 1–12 (2020).Article 

Google Scholar 
Levin, M. F., Kleim, J. A. & Wolf, S. L. What do motor “recovery” and “compensation” mean in patients following stroke?. Neurorehabil. Neural Repair 23(4), 313–319 (2009).Article 
CAS 
PubMed 

Google Scholar 
Alt Murphy, M., Murphy, S., Persson, H. C., Bergström, U. B. & Sunnerhagen, K. S. Kinematic analysis using 3D motion capture of drinking task in people with and without upper-extremity impairments. J. Vis. Exp. https://doi.org/10.3791/57228-v (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ellis, M. D., Lan, Y., Yao, J. & Dewald, J. P. A. Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: A review of paradigms addressing the effects of shoulder abduction loading. J. Neuroeng. Rehabil. 13(1), 95 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Xu, J. et al. Separable systems for recovery of finger strength and control after stroke. J. Neurophysiol. 118(2), 1151–1163 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Kwakkel, G. et al. Standardized measurement of quality of upper limb movement after stroke: Consensus-based core recommendations from the second stroke recovery and rehabilitation roundtable. Int. J. Stroke 14(8), 783–791 (2019).Article 
CAS 
PubMed 

Google Scholar 
Krakauer, J. W., Carmichael, S. T., Corbett, D. & Wittenberg, G. F. Getting neurorehabilitation right: What can be learned from animal models?. Neurorehabil. Neural Repair 26(8), 923–931 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Kanko, R. M., Laende, E. K., Davis, E. M., Selbie, W. S. & Deluzio, K. J. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. J. Biomech. 127, 110665 (2021).Article 
PubMed 

Google Scholar 
Nakano, N. et al. Evaluation of 3D Markerless motion capture accuracy using OpenPose with multiple video cameras. Front. Sports Act. Living https://doi.org/10.3389/fspor.2020.00050 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Needham, L. et al. The development and evaluation of a fully automated markerless motion capture workflow. J. Biomech. 144, 111338 (2022).Article 
PubMed 

Google Scholar 
Song, K., Hullfish, T. J., Silva, R. S., Silbernagel, K. G. & Baxter, J. R. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. bioRxiv. 2023.02.21.526496 (2023).Uhlrich, S. D., Falisse, A., Kidziński, Ł., Muccini, J., Ko, M., Chaudhari, A. S. et al. OpenCap: 3D human movement dynamics from smartphone videos. bioRxiv. 2022.07.07.499061 (2022).Prince, S. Computer Vision: Models, Learning, and Inference (Cambridge University Press, 2012).Book 

Google Scholar 
Cao, Z., Hidalgo, G., Simon, T., Wei, S. E. & Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2021).Article 
PubMed 

Google Scholar 
Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M. et al. MediaPipe: A Framework for Building Perception Pipelines. https://doi.org/10.48550/arXiv.1906.08172. Available from: https://ui.adsabs.harvard.edu/abs/2019arXiv190608172L (2019).Kendall, A., Grimes, M. & Cipolla, R. (eds) PoseNet: A convolutional network for real-time 6-DOF camera relocalization. In 2015 IEEE International Conference on Computer Vision (ICCV) 7–13 (2015).Bajpai, R. & Joshi, D. MoveNet: A deep neural network for joint profile prediction across variable walking speeds and slopes. IEEE Trans. Instrum. Meas. 70, 1–11 (2021).
Google Scholar 
Chung, J.-L., Ong, L.-Y. & Chew, L. Comparative analysis of skeleton-based human pose estimation. Future Internet 14, 380 (2022).Article 

Google Scholar 
Kim, W., Sung, J., Saakes, D., Huang, C. & Xiong, S. Ergonomic postural assessment using a new open-source human pose estimation technology (OpenPose). Int. J. Ind. Ergon. 84, 103164 (2021).Article 

Google Scholar 
Jiaming, C., Ong, L.-Y. & Chew, L. Telehealth Using posenet-based system for in-home rehabilitation. Future Internet 13, 173 (2021).Article 

Google Scholar 
Kidziński, Ł et al. Deep neural networks enable quantitative movement analysis using single-camera videos. Nat. Commun. 11(1), 4054 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Baptista, R. et al. Home self-training: Visual feedback for assisting physical activity for stroke survivors. Comput. Methods Progr. Biomed. 176, 111–120 (2019).Article 

Google Scholar 
Capecci, M. et al. The KIMORE dataset: Kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation. IEEE Trans. Neural Syst. Rehabilit. Eng. 27(7), 1436–1448 (2019).Article 

Google Scholar 
Cary, F., Postolache, O. & Girão, P. S. (eds) Kinect based system and Artificial Neural Networks classifiers for physiotherapy assessment. In 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA) 11–12 (2014).Eichler, N., Hel-Or, H., Shmishoni, I., Itah, D., Gross, B. & Raz, S. (eds). Non-invasive motion analysis for stroke rehabilitation using off the shelf 3D sensors. In 2018 International Joint Conference on Neural Networks (IJCNN) 8–13 (2018).Pogrzeba, L., Neumann, T., Wacker, M. & Jung, B. Analysis and quantification of repetitive motion in long-term rehabilitation. IEEE J. Biomed. Health Inform. 23(3), 1075–1085 (2019).Article 
PubMed 

Google Scholar 
Lee, T., Jeon, E. T., Jung, J. M. & Lee, M. Deep-learning-based stroke screening using skeleton data from neurological examination videos. J. Pers. Med. 12(10), 1691 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lin, H. P., Zhao, L., Woolley, D., Zhang, X., Cheng, H. J., Liang, W. et al. Exploring the feasibility of computer vision for detecting post-stroke compensatory movements. In IEEE International Conference on Rehabilitation Robotics, Vol. 2023 1–6 (2023).Zestas, O. N., Soumis, D. N., Kyriakou, K. D., Seklou, K. & Tselikas, N. D. A computer-vision based hand rehabilitation assessment suite. AEU Int. J. Electron. Commun. 169, 154762 (2023).Article 

Google Scholar 
Kim, B. & Neville, C. Accuracy and feasibility of a novel fine hand motor skill assessment using computer vision object tracking. Sci. Rep. 13(1), 1813 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Debnath, B., O’Brien, M., Yamaguchi, M. & Behera, A. A review of computer vision-based approaches for physical rehabilitation and assessment. Multimed. Syst. 28(1), 209–239 (2022).Article 

Google Scholar 
Alt Murphy, M., Willén, C. & Sunnerhagen, K. S. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil. Neural Repair 25(1), 71–80 (2011).Article 
PubMed 

Google Scholar 
Alt Murphy, M., Willén, C. & Sunnerhagen, K. S. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. Neurorehabil. Neural Repair 26(9), 1106–1115 (2012).Article 
PubMed 

Google Scholar 
Shapiro, R. Direct linear transformation method for three-dimensional cinematography. Res. Q. 49(2), 197–205 (1978).CAS 
PubMed 

Google Scholar 
Alt Murphy, M., Willén, C. & Sunnerhagen, K. S. Responsiveness of upper extremity kinematic measures and clinical improvement during the first three months after stroke. Neurorehabil. Neural Repair 27(9), 844–853 (2013).Article 
PubMed 

Google Scholar 
Cerveri, P., Pedotti, A. & Ferrigno, G. Robust recovery of human motion from video using Kalman filters and virtual humans. Hum. Mov. Sci. 22(3), 377–404 (2003).Article 
CAS 
PubMed 

Google Scholar 
Crenna, F., Rossi, G. B. & Berardengo, M. Filtering biomechanical signals in movement analysis. Sensors (Basel) 21(13), 4580 (2021).Article 
ADS 
PubMed 

Google Scholar 
Youngjoo, K. & Hyochoong, B. Introduction to Kalman filter and its applications. In Ch. 2 Introduction and Implementations of the Kalman Filter (ed. Felix, G.) (IntechOpen, 2018).
Google Scholar 
Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A 32(5), 922–923 (1976).Article 
ADS 

Google Scholar 
Needham, L., Evans, M., Cosker, D. P. & Colyer, S. L. Can Markerless pose estimation algorithms estimate 3D mass centre positions and velocities during linear sprinting activities?. Sensors 21(8), 2889 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Bland, J. M. & Altman, D. G. Agreement between methods of measurement with multiple observations per individual. J. Biopharm. Stat. 17(4), 571–582 (2007).Article 
MathSciNet 
PubMed 

Google Scholar 
Sivan, M., O’Connor, R. J., Makower, S., Levesley, M. & Bhakta, B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J. Rehabilit. Med. 43(3), 181–189 (2011).Article 

Google Scholar 
Yang, S. et al. Markerless motion capture systems for tracking of persons in forensic biomechanics: An overview. Comput. Methods Biomech. Biomed. Eng. 2, 46–65 (2013).
Google Scholar 
Urbanczyk, C. A., Bonfiglio, A., McGregor, A. H. & Bull, A. M. J. Comparing optical and electromagnetic tracking systems to facilitate compatibility in sports kinematics data. Int. Biomech. 8(1), 75–84 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Hindle, B. R., Keogh, J. W. L. & Lorimer, A. V. Inertial-based human motion capture: A technical summary of current processing methodologies for spatiotemporal and kinematic measures. Appl. Bionics Biomech. 2021, 6628320 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Cutti, A. G., Giovanardi, A., Rocchi, L., Davalli, A. & Sacchetti, R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 46(2), 169–178 (2008).Article 
PubMed 

Google Scholar 
El-Gohary, M. & McNames, J. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans. Biomed. Eng. 59(9), 2635–2641 (2012).Article 
PubMed 

Google Scholar 
Schmitz, A. et al. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system. Gait Posture 41(2), 694–698 (2015).Article 
PubMed 

Google Scholar 
Natarajan, S. K., Wang, X., Spranger, M. & Gräser, A. (eds) Reha@Home—A vision based markerless gait analysis system for rehabilitation at home. In 2017 13th IASTED International Conference on Biomedical Engineering (BioMed) 20–21 (2017).Metcalf, C. D. et al. Markerless motion capture and measurement of hand kinematics: Validation and application to home-based upper limb rehabilitation. IEEE Trans. Biomed. Eng. 60(8), 2184–2192 (2013).Article 
PubMed 

Google Scholar 
Scott, B., Chadwick, E., McInnes, M. & Blana, D. Assessing single camera markerless motion capture during upper limb activities of daily living. Gait Posture 106, S184 (2023).Article 

Google Scholar 
Sandau, M. et al. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane. Med. Eng. Phys. 36(9), 1168–1175 (2014).Article 
PubMed 

Google Scholar 
Rab, G., Petuskey, K. & Bagley, A. A method for determination of upper extremity kinematics. Gait Posture 15(2), 113–119 (2002).Article 
PubMed 

Google Scholar 
Benoit, D. L. et al. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24(2), 152–164 (2006).Article 
PubMed 

Google Scholar 
Kanko, R. M., Laende, E., Selbie, W. S. & Deluzio, K. J. Inter-session repeatability of markerless motion capture gait kinematics. J. Biomech. 121, 110422 (2021).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles