Water-catalyzed iron-molybdenum carbyne formation in bimetallic acetylene transformation

Fischer, E. O. et al. Trans‐Halogeno[alkyl(aryl)carbyne]tetracarbonyl complexes of chromium, molybdenum, and tungsten-A new class of compounds having a transition metal‐carbon triple bond. Angew. Chem. Int. Ed. 12, 564–565 (1973).Article 
ADS 

Google Scholar 
McLain, S. J. et al. Multiple metal-carbon bonds. 10. Thermally stable tantalum alkylidyne complexes and the crystal structure of Ta(η5-C5Me5)(CPh)(PMe3)2Cl. J. Am. Chem. Soc. 100, 5962–5964 (1978).Article 
CAS 

Google Scholar 
Wei, R. et al. Synthesis and reactivity of copper carbyne anion complexes. Nat. Synth. 2, 357–363 (2023).Article 
ADS 

Google Scholar 
Chen, S. et al. Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated systems. Nat. Commun. 11, 4651 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cui, M. & Jia, G. Organometallic chemistry of transition metal alkylidyne complexes centered at metathesis reactions. J. Am. Chem. Soc. 144, 12546–12566 (2022).Article 
CAS 
PubMed 

Google Scholar 
Fürstner, A. Alkyne metathesis on the rise. Angew. Chem. Int. Ed. 52, 2794–2819 (2013).Article 

Google Scholar 
Yiannakas, E., Grimes, M. I., Whitelegge, J. T., Fürstner, A. & Hulme, A. N. An alkyne-metathesis-based approach to the synthesis of the anti-malarial macrodiolide samroiyotmycin A. Angew. Chem. Int. Ed. 60, 18504–18508 (2021).Article 
CAS 

Google Scholar 
Bellone, D. E., Bours, J., Menke, E. H. & Fischer, F. R. Highly selective molybdenum ONO pincer complex initiates the living ring-opening metathesis polymerization of strained alkynes with exceptionally low polydispersity indices. J. Am. Chem. Soc. 137, 850–856 (2015).Article 
CAS 
PubMed 

Google Scholar 
von Kugelgen, S., Bellone, D. E., Cloke, R. R., Perkins, W. S. & Fischer, F. R. Initiator Control of Conjugated Polymer Topology in Ring-Opening Alkyne Metathesis Polymerization. J. Am. Chem. Soc. 138, 6234–6239 (2016).Article 

Google Scholar 
Münster, K. & Walter, M. D. Comprehensive Organometallic Chemistry IV. 7, 46−184 (Elsevier, 2022).Marchetti, F., Comprehensive Organometallic Chemistry IV. 7, 210−257 (Elsevier, 2022).Fischer, E. O., Schneider, J. & Neugebauer, D. [(CO)3PPh3FeCNiPr2]+, a novel stable carbyneiron complex cation. Angew. Chem. 23, 820–821 (1984).Article 

Google Scholar 
Mokhtarzadeh, C. C., Moore, C. E., Rheingold, A. L. & Figueroa, J. S. Terminal iron carbyne complexes derived from arrested CO2 reductive disproportionation. Angew. Chem. Int. Ed. 56, 10894–10899 (2017).Article 
CAS 

Google Scholar 
Rittle, J. & Peters, J. C. Proton-coupled reduction of an iron cyanide complex to methane and ammonia. Angew. Chem. Int. Ed. 55, 12262–12265 (2016).Article 
CAS 

Google Scholar 
Lee, Y. & Peters, J. C. Silylation of iron-bound carbon monoxide affords a terminal Fe carbyne. J. Am. Chem. Soc. 133, 4438–4446 (2011).Article 
CAS 
PubMed 

Google Scholar 
Rao, J. et al. Triplet iron carbyne complex. J. Am. Chem. Soc. 145, 25766–25775 (2023).Article 
CAS 
PubMed 

Google Scholar 
Citek, C., Oyala, P. H. & Peters, J. C. Mononuclear Fe(I) and Fe(II) acetylene adducts and their reductive protonation to terminal Fe(IV) and Fe(V) carbynes. J. Am. Chem. Soc. 141, 15211–15221 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Casey, C. P., Fagan, P. J. & Miles, W. H. Synthesis and interconversions of dinuclear iron complexes with μ-methyl, μ-methylene, and μ-methylidyne ligands. J. Am. Chem. Soc. 104, 1134–1136 (1982).Article 
CAS 

Google Scholar 
Casey, C. P., Marder, S. R. & Adams, B. R. Interconversion of μ-alkylidyne and μ-alkenyl diiron Complexes. J. Am. Chem. Soc. 107, 7700–7705 (1985).Article 
CAS 

Google Scholar 
Casey, C. P. et al. Hydrocarbation-formation of diiron μ-alkylidyne complexes from the addition of the carbon-hydrogen bond of a μ-methylidyne complex across alkenes. J. Am. Chem. Soc. 108, 4043–4053 (1986).Article 
CAS 

Google Scholar 
Agonigi, G. et al. Regioselective nucleophilic additions to diiron carbonyl complexes containing a bridging aminocarbyne ligand: A synthetic, crystallographic and DFT study. Eur. J. Inorg. Chem. 2018, 960–971 (2017).Article 

Google Scholar 
Marchetti, F. Constructing organometallic architectures from aminoalkylidyne diiron complexes. Eur. J. Inorg. Chem. 2018, 3987–4003 (2018).Article 
CAS 

Google Scholar 
Biancalana, L. & Marchetti, F. Aminocarbyne ligands in organometallic chemistry. Coord. Chem. Rev. 449, 214203–214256 (2021).Article 
CAS 

Google Scholar 
Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334, 974–977 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Čorić, I. & Holland, P. L. Insight into the iron-molybdenum cofactor of nitrogenase from synthetic iron complexes with sulfur, carbon, and hydride ligands. J. Am. Chem. Soc. 138, 7200–7211 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, L., Rauchfuss, T. B. & Woods, T. J. Iron carbide–sulfide carbonyl clusters. Inorg. Chem. 58, 8271–8274 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Joseph, C., Cobb, C. R. & Rose, M. J. Single-step sulfur insertions into iron carbide carbonyl clusters: unlocking the synthetic door to FeMoco analogues. Angew. Chem. Int. Ed. 60, 3433–3437 (2021).Article 
CAS 

Google Scholar 
Le, L. N. V., Bailey, G. A., Scott, A. G. & Agapie, T. Partial synthetic models of FeMoco with sulfide and carbyne ligands: effect of interstitial atom in nitrogenase active site. Proc. Natl Acad. Sci. USA 118, e2109241118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arnett, C. H. & Agapie, T. Activation of an open shell, carbyne-bridged diiron complex toward binding of dinitrogen. J. Am. Chem. Soc. 142, 10059–10068 (2020).Article 
CAS 
PubMed 

Google Scholar 
Campos, J. Bimetallic cooperation across the periodic table. Nat. Rev. Chem. 4, 696–702 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jasniewski, A. J., Lee, C. C., Ribbe, M. W. & Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. 120, 5107–5157 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Su, L. et al. A bioinspired iron-molybdenum μ-nitrido complex and its reactivity toward ammonia formation. Angew. Chem. Int. Ed. 61, e202203121 (2022).Article 
ADS 
CAS 

Google Scholar 
Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wilson, D. W. N. & Holland, P. L. Comprehensive Organometallic Chemistry IV. 15, 41–72 (Elsevier, 2022).Santos, P. C. D. et al. Substrate interactions with the nitrogenase active site. Acc. Chem. Res. 38, 208–214 (2005).Article 
PubMed 

Google Scholar 
Lee, H. et al. An organometallic intermediate during alkyne reduction by nitrogenase. J. Am. Chem. Soc. 126, 9563–9569 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lee, H. I. et al. Electron inventory, kinetic assignment (En), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO. J. Am. Chem. Soc. 127, 15880–15890 (2005).Article 
CAS 
PubMed 

Google Scholar 
Yang, D. et al. Reactivity toward unsaturated small molecules of thiolate-bridged diiron hydride complexes. Inorg. Chem. 57, 15198–15204 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X., Feng, L., Tung, C.-H. & Wang, W. Transformation of acetylene to ethenylidene, carbene, acetylide, vinyl, and olefin groups with Cp*Fe(1,2-Cy2PC6H4S). Inorg. Chem. 62, 18599–18606 (2023).Article 
CAS 
PubMed 

Google Scholar 
Xue, M. et al. Catalytic hydrogenation of olefins by a multifunctional molybdenum-sulfur complex. Nat. Commun. 15, 797 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iwashita, Y. Force constants in the acetylene molecule in a cobalt-carbonyl complex and in an excited electronic state. Inorg. Chem. 9, 1178–1182 (1970).Article 
CAS 

Google Scholar 
Noonikara-Poyil, A., Ridlen, S. G., Fernández, I. & Dias, H. V. R. Isolable acetylene complexes of copper and silver. Chem. Sci. 13, 7190–7203 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fast, H. & Welsh, H. L. High-resolution raman spectra of acetylene, acetylene-d1, and acetylene-d2. J. Mol. Spectrosc. 41, 203–221 (1972).Article 
ADS 
CAS 

Google Scholar 
Cordero, B. et al. (2008) Covalent radii revisited. Dalton Trans. 2832.Zenkina, O. V., Keske, E. C., Wang, R. & Crudden, C. M. Double single-crystal-to-single-crystal transformation and small-molecule activation in rhodium NHC complexes. Angew. Chem. Int. Ed. 50, 8100–8104 (2011).Article 
CAS 

Google Scholar 
Hirota, E. et al. Microwave spectra of deuterated ethylenes: dipole moment and rz structure. J. Mol. Spectrosc. 89, 223–231 (1981).Article 
ADS 
CAS 

Google Scholar 
Heiden, Z. M. & Lathem, A. P. Establishing the hydride donor abilities of main group hydrides. Organometallics 34, 1818–1827 (2015).Article 
CAS 

Google Scholar 
Bezdek, M. J. & Chirik, P. J. Proton-coupled electron transfer to a molybdenum ethylene complex yields a β-Agostic ethyl: structure, dynamics and mechanism. J. Am. Chem. Soc. 140, 13817–13826 (2018).Article 
CAS 
PubMed 

Google Scholar 
Carmona, E., Marin, J. M., Poveda, M. L., Atwood, J. L. & Rogers, R. D. Preparation and properties of dinitrogen trimethylphosphine complexes of molybdenum and tungsten. 4. Synthesis, chemical properties, and X-ray structure of cis-[Mo(N2)2(PMe3)4]. The crystal and molecular structures of trans-[Mo(C2H4)2(PMe3)4] and trans,mer-[Mo(C2H4)2(CO)(PMe3)3]. J. Am. Chem. Soc. 105, 3014–3022 (1983).Article 
CAS 

Google Scholar 
Álvarez, M. Á., Galindo, A., Pérez, P. J. & Carmona, E. Molybdenum and tungsten complexes with carbon dioxide and ethylene ligands. Chem. Sci. 10, 8541–8546 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Ben-Ari, E., Leitus, G., Shimon, L. J. W. & Milstein, D. Metal−ligand cooperation in C−H and H2 activation by an electron-rich PNP Ir(I) system: facile ligand dearomatization−aromatization as key steps. J. Am. Chem. Soc. 128, 15390–15391 (2006).Article 
CAS 
PubMed 

Google Scholar 
Iron, M. A., Ben-Ari, E., Cohen, R. & Milstein, D. (2009) Metal–ligand cooperation in the trans addition of dihydrogen to a pincer Ir(I) complex: a DFT study. Dalton Trans. 9433.Dossett, S. J. et al. Chemistry of polynuclear metal complexes with bridging carbene or carbyne ligands. Part 79. Synthesis and reactions of the alkylidynemetal complexes [M(≡CR)(CO)2(η-C5H5)](R = C6H3Me2−2,6, M = Cr, Mo, or W; R = C6H4Me-2, C6H4OMe-2, or C6H4NMe2−4, M = Mo); Crystal structure of the compound [MoFe(µ-CC6H3Me2−2,6)(CO)5. J. Chem. Soc., Dalton Trans. 2453–2465 (1988).Allen, F. H. et al. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2, S1 (1987).Article 

Google Scholar 
Abugideiri, F., Kelland, M. A. & Poli, R. Molybdenum complex Cp*MoH5(PMe3): a classical polyhydride with a pentagonal-bipyramidal structure and a long T1 relaxation time. Organometallics 12, 2388–2389 (1993).Article 
CAS 

Google Scholar 
Ohki, Y. et al. Dinuclear Mo2H8 complex supported by bulky C5H2tBu3 ligands. Chem. Commun. 56, 8035–8038 (2020).Article 
CAS 

Google Scholar 
Igarashi, R. Y. et al. Trapping H-bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. J. Am. Chem. Soc. 127, 6231–6241 (2005).Article 
CAS 
PubMed 

Google Scholar 
Lukoyanov, D., Barney, B. M., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state. Proc. Natl Acad. Sci. USA 104, 1451–1455 (2007).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lukoyanov, D., Yang, Z. Y., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? J. Am. Chem. Soc. 132, 2526–2527 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arnet, N. A. et al. Synthesis, characterization, and nitrogenase-relevant reactions of an iron sulfide complex with a bridging hydride. J. Am. Chem. Soc. 137, 13220–13223 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoffman, B. M., Lukoyanov, D., Dean, D. R. & Seefeldt, L. C. Nitrogenase: a draft mechanism. Acc. Chem. Res. 46, 587–595 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
De Visser, S. P. & Shaik, S. A Proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome P450 enzymes. J. Am. Chem. Soc. 125, 7413–7424 (2003).Article 
PubMed 

Google Scholar 
Mondal, D., Snodgrass, H. M., Gomez, C. A. & Lewis, J. C. Non-native site-selective enzyme catalysis. Chem. Rev. 123, 10381–10431 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Williams, D. B. G. & Lawton, M. Drying of organic solvents: quantitative evaluation of the efficiency of several desiccants. J. Org. Chem. 75, 8351–8354 (2010).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles