Mechanism of activation and autophosphorylation of a histidine kinase

Ulrich, L. E. & Zhulin, I. B. The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res. 38, D401–D407 (2010).Article 
CAS 
PubMed 

Google Scholar 
Krell, T. et al. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol. 64, 539–559 (2010).Article 
CAS 
PubMed 

Google Scholar 
Zschiedrich, C. P., Keidel, V. & Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428, 3752–3775 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Igarashi, M. et al. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J. Antibiot. 66, 459–464 (2013).Article 
CAS 

Google Scholar 
Okada, A. et al. Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth. J. Antibiot. 63, 89–94 (2010).Article 
CAS 

Google Scholar 
Weidenmaier, C., Goerke, C. & Wolz, C. Staphylococcus aureus determinants for nasal colonization. Trends Microbiol. 20, 243–250 (2012).Article 
CAS 
PubMed 

Google Scholar 
Turner, N. A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17, 203–218 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Raineri, E. J. M., Altulea, D. & van Dijl, J. M. Staphylococcal trafficking and infection—from ‘nose to gut’ and back. FEMS Microbiol. Rev. 46, fuab041 (2021).Article 
PubMed Central 

Google Scholar 
Bleul, L., Francois, P. & Wolz, C. Two-component systems of S. aureus: Signaling and sensing mechanisms. Genes 13, 34 (2022).Article 
CAS 

Google Scholar 
Schug, A., Weigt, M., Onuchic, J. N., Hwa, T. & Szurmant, H. High-resolution protein complexes from integrating genomic information with molecular simulation. Proc. Natl. Acad. Sci. USA 106, 22124–22129 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dago, A. E. et al. Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis. Proc. Natl. Acad. Sci. USA 109, E1733–E1742 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Olivieri, F. A. et al. Conformational and reaction dynamic coupling in histidine kinases: Insights from hybrid QM/MM simulations. J. Chem. Inf. Model. 60, 833–842 (2020).Article 
CAS 
PubMed 

Google Scholar 
Cheng, R. R., Morcos, F., Levine, H. & Onuchic, J. N. Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information. Proc. Natl. Acad. Sci. USA 111, E563–E571 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jacob-Dubuisson, F., Mechaly, A., Betton, J.-M. & Antoine, R. Structural insights into the signalling mechanisms of two-component systems. Nat. Rev. Microbiol. 16, 585–593 (2018).Article 
CAS 
PubMed 

Google Scholar 
Takada, H. & Yoshikawa, H. Essentiality and function of WalK/WalR two-component system: the past, present, and future of research. Biosci. Biotechnol. Biochem. 82, 741–751 (2018).Article 
CAS 
PubMed 

Google Scholar 
Buschiazzo, A. & Trajtenberg, F. Two-component sensing and regulation: how do histidine kinases talk with response regulators at the molecular level? Annu. Rev. Microbiol. 73, 507–528 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pirrung, M. C. Histidine kinases and two-component signal transduction systems. Chem. Biol. 6, R167–R175 (1999).Article 
CAS 
PubMed 

Google Scholar 
Dikiy, I. et al. Insights into histidine kinase activation mechanisms from the monomeric blue light sensor el346. Proc. Natl. Acad. Sci. USA 116, 4963–4972 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bhate, M. P., Molnar, K. S., Goulian, M. & DeGrado, W. F. Signal transduction in histidine kinases: insights from new structures. Structure 23, 981–994 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashenberg, O., Keating, A. E. & Laub, M. T. Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans. J. Mol. Biol. 425, 1198–1209 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Igo, M. M., Ninfa, A. J., Stock, J. B. & Silhavy, T. J. Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev. 3, 1725–1734 (1989).Article 
CAS 
PubMed 

Google Scholar 
Wang, C. et al. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. PLoS Biol. 11, e1001493 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fukushima, T. et al. A role for the essential YycG sensor histidine kinase in sensing cell division. Mol. Microbiol. 79, 503–522 (2011).Article 
CAS 
PubMed 

Google Scholar 
Fabret, C. & Hoch, J. A. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J. Bacteriol. 180, 6375–6383 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin, P. K., Li, T., Sun, D., Biek, D. P. & Schmid, M. B. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J. Bacteriol. 181, 3666–3673 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Quezada, C. M. et al. Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA. J. Biol. Chem. 280, 30581–30585 (2005).Article 
CAS 
PubMed 

Google Scholar 
Mechaly, A. E., Sassoon, N., Betton, J.-M. & Alzari, P. M. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol. 12, e1001776 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Casino, P., Miguel-Romero, L. & Marina, A. Visualizing autophosphorylation in histidine kinases. Nat. Commun. 5, 3258 (2014).Article 
PubMed 

Google Scholar 
Clausen, V. A. et al. Biochemical characterization of the first essential two-component signal transduction system from Staphylococcus aureus and Streptococcus pneumoniae. J. Mol. Microbiol. Biotechnol. 5, 252–260 (2003).CAS 
PubMed 

Google Scholar 
Cui, Q. Perspective: Quantum mechanical methods in biochemistry and biophysics. J. Chem. Phys. 145, 140901 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Wolanin, P. M., Thomason, P. A. & Stock, J. B. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 3, 3013.1 (2002).Article 

Google Scholar 
Celikel, R., Veldore, V. H., Mathews, I., Devine, K. M. & Varughese, K. I. Atp forms a stable complex with the essential histidine kinase walk (yycg) domain. Acta Crystallogr. Sect. D: Biol. Crystallogr. 68, 839–845 (2012).Article 
CAS 

Google Scholar 
Cai, Y. et al. Conformational dynamics of the essential sensor histidine kinase WalK. Acta Crystallogr. D: Struct. Biol. 73, 793–803 (2017).Article 
CAS 
PubMed 

Google Scholar 
Webb, B. & Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics 54, 5–6 (2016).Article 
PubMed Central 

Google Scholar 
Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).Article 
CAS 
PubMed 

Google Scholar 
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).Article 

Google Scholar 
Lindahl, E., Abraham, M., Hess, B. & van der Spoel, D. Gromacs 2020 manual. https://doi.org/10.5281/zenodo.3562512 (2020).Bonomi, M., Bussi, G., Camilloni, C., Tribello, G. A. & The PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 16, 670–673 (2019).Article 

Google Scholar 
Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct. Funct. Bioinf. 78, 1950–1958 (2010).Article 
CAS 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).Article 
CAS 

Google Scholar 
Darden, T., York, D. & Pedersen, L. Particle–mesh Ewald: An \(n\cdot \log (n)\) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).Article 
CAS 

Google Scholar 
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).Article 
CAS 

Google Scholar 
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article 
PubMed 

Google Scholar 
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).Article 
CAS 

Google Scholar 
Kubař, T., Welke, K. & Groenhof, G. New QM/MM implementation of the DFTB3 method in the Gromacs package. J. Comput. Chem. 36, 1978–1989 (2015).Article 
PubMed 

Google Scholar 
Kubař, T. Gromacs – QM/MM interface for DFTB+. https://github.com/tomaskubar/gromacs-dftbplus (2022). Last accessed 18 March 2022.Kubař, T. DFTB+ – modified QM/MM interface. https://github.com/tomaskubar/dftbplus (2022). Last accessed 18 March 2022.Hourahine, B. et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152, 124101 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. Plumed 2: New feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).Article 
CAS 

Google Scholar 
Gaus, M., Cui, Q. & Elstner, M. DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J. Chem. Theory Comput. 7, 931–948 (2011).Article 
CAS 

Google Scholar 
Gaus, M., Goez, A. & Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9, 338–354 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kansari, M., Eichinger, L. & Kubař, T. Extended-sampling QM/MM simulation of biochemical reactions involving P–N bonds. Phys. Chem. Chem. Phys. 25, 9824–9836 (2023).Article 
CAS 
PubMed 

Google Scholar 
Gaus, M., Lu, X., Elstner, M. & Cui, Q. Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications. J. Chem. Theory Comput. 10, 1518–1537 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Raiteri, P., Laio, A., Gervasio, F. L., Micheletti, C. & Parrinello, M. Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B 110, 3533–3539 (2006).Article 
CAS 
PubMed 

Google Scholar 
Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).Article 
PubMed 

Google Scholar 
Rosta, E., Kamerlin, S. C. & Warshel, A. On the interpretation of the observed linear free energy relationship in phosphate hydrolysis: a thorough computational study of phosphate diester hydrolysis in solution. Biochemistry 47, 3725–3735 (2008).Article 
CAS 
PubMed 

Google Scholar 
Klähn, M., Rosta, E. & Warshel, A. On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins. J. Am. Chem. Soc. 128, 15310–15323 (2006).Article 
PubMed 

Google Scholar 
Trajtenberg, F. et al. Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. eLife 5, e21422 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Lima, S. et al. An allosteric switch ensures efficient unidirectional information transmission by the histidine kinase DesK from Bacillus subtilis. Sci. Signal. 16, eabo7588 (2023).Article 
CAS 
PubMed 

Google Scholar 
Gushchin, I. et al. Sensor histidine kinase NarQ activates via helical rotation, diagonal scissoring, and eventually piston-like shifts. Int. J. Mol. Sci. 21, 3110 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bouillet, S., Wu, T., Chen, S., Stock, A. M. & Gao, R. Structural asymmetry does not indicate hemiphosphorylation in the bacterial histidine kinase cpxa. J. Biol. Chem. 295, 8106–8117 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wingbermühle, S. & Schäfer, L. V. Capturing the flexibility of a protein–ligand complex: Binding free energies from different enhanced sampling techniques. J. Chem. Theory Comput. 16, 4615–4630 (2020).Article 
PubMed 

Google Scholar 
Arora, K. & Brooks III, C. L. Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism. Proc. Natl. Acad. Sci. USA 104, 18496–18501 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marsico, F. et al. Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps. Biochem. Biophys. Res. Commun. 498, 305–312 (2018).Article 
CAS 
PubMed 

Google Scholar 
Riccardi, D. et al. “Proton holes” in long-range proton transfer reactions in solution and enzymes: a theoretical analysis. J. Am. Chem. Soc. 128, 16302–16311 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jülich Supercomputing Centre. JUWELS cluster and booster: Exascale pathfinder with modular supercomputing architecture at Juelich Supercomputing Centre. J. Large-scale Res. Facilities 7, A138 (2021).
Google Scholar 

Hot Topics

Related Articles