On-surface synthesis and characterization of anti-aromatic cyclo[12]carbon and cyclo[20]carbon

Parent, D. C. & McElvany, S. W. Investigations of small carbon cluster-ion structures by reactions with hydrogen cyanide. J. Am. Chem. Soc. 111, 2393–2401 (1989).Article 

Google Scholar 
Van Orden, A. & Saykally, R. J. Small carbon clusters: spectroscopy, structure, and energetics. Chem. Rev. 98, 2313–2357 (1998).Article 
PubMed 

Google Scholar 
Grutter, M. et al. Electronic absorption spectra of linear C6, C8 and cyclic C10, C12 in neon matrices. J. Chem. Phys. 111, 7397–7401 (1999).Article 
ADS 

Google Scholar 
Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994).Article 
ADS 

Google Scholar 
Pitzer, K. S. & Clementi, E. Large molecules in carbon vapor. J. Am. Chem. Soc. 81, 4477–4485 (1959).Article 

Google Scholar 
Parasuk, V., Almlof, J. & Feyereisen, M. W. The [18] all-carbon molecule: cumulene or polyacetylene? J. Am. Chem. Soc. 113, 1049–1050 (1991).Article 

Google Scholar 
Torelli, T. & Mitas, L. Electron correlation in C4N+2 carbon rings: aromatic versus dimerized structures. Phys. Rev. Lett. 85, 1702–1705 (2000).Article 
ADS 
PubMed 

Google Scholar 
Arulmozhiraja, S. & Ohno, T. CCSD calculations on C14, C18, and C22 carbon clusters. J. Chem. Phys. 128, 114301 (2008).Article 
ADS 
PubMed 

Google Scholar 
Remya, K. & Suresh, C. H. Carbon rings: a DFT study on geometry, aromaticity, intermolecular carbon–carbon interactions and stability. RSC Advances 6, 44261–44271 (2016).Article 
ADS 

Google Scholar 
Baryshnikov, G. V., Valiev, R. R., Kuklin, A. V., Sundholm, D. & Agren, H. Cyclo[18]carbon: insight into electronic structure, aromaticity, and surface coupling. J. Phys. Chem. Lett. 10, 6701–6705 (2019).Article 
PubMed 

Google Scholar 
Baryshnikov, G. V. et al. Aromaticity of even-number cyclo[n]carbons (n = 6-100). J. Phys. Chem. A 124, 10849–10855 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Charistos, N. D. & Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 22, 9240–9249 (2020).Article 
PubMed 

Google Scholar 
Baryshnikov, G. V. et al. Odd-number cyclo[n]carbons sustaining alternating aromaticity. J. Phys. Chem. A 126, 2445–2452 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Brémond, E., Pérez-Jiménez, A. J., Adamo, C. & Sancho-García, J. C. Stability of the polyynic form of C18, C22, C26, and C30 nanorings: a challenge tackled by range-separated double-hybrid density functionals. Phys. Chem. Chem. Phys. 24, 4515–4525 (2022).Article 
PubMed 

Google Scholar 
Li, M. et al. Potential molecular semiconductor devices: cyclo-Cn (n = 10 and 14) with higher stabilities and aromaticities than acknowledged cyclo-C18. Phys. Chem. Chem. Phys. 22, 4823–4831 (2020).Article 
ADS 
PubMed 

Google Scholar 
Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).Article 
ADS 
PubMed 

Google Scholar 
Scriven, L. M. et al. Synthesis of cyclo[18]carbon via debromination of C18Br6. J. Am. Chem. Soc. 142, 12921–12924 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, Y. et al. On-surface synthesis of a doubly anti-aromatic carbon allotrope. Nature 623, 977–981 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Sun, L. et al. On-surface synthesis of aromatic cyclo[10]carbon and cyclo[14]carbon. Nature 623, 972–976 (2023).Article 
ADS 
PubMed 

Google Scholar 
von Helden, G., Hsu, M.-T., Kemper, P. R. & Bowers, M. T. Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes. J. Chem. Phys. 95, 3835–3837 (1991).Article 
ADS 

Google Scholar 
von Helden, G., Gotts, N. G. & Bowers, M. T. Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature 363, 60–63 (1993).Article 
ADS 

Google Scholar 
Anderson, H. L., Patrick, C. W., Scriven, L. M. & Woltering, S. L. A short history of cyclocarbons. Bull. Chem. Soc. Jpn. 94, 798–811 (2021).Article 

Google Scholar 
Jones, R. O. Density functional study of carbon clusters C2n (2⩽n⩽16). I. Structure and bonding in the neutral clusters. J. Chem. Phys. 110, 5189–5200 (1999).Article 
ADS 

Google Scholar 
Manna, D. & Martin, J. M. What are the ground state structures of C20 and C24? An explicitly correlated Ab Initio approach. J. Phys. Chem. A 120, 153–160 (2016).Article 
PubMed 

Google Scholar 
Feyereisen, M., Gutowski, M., Simons, J. & Almlöf, J. Relative stabilities of fullerene, cumulene, and polyacetylene structures for Cn: n=18–60. J. Chem. Phys. 96, 2926–2932 (1992).Article 
ADS 

Google Scholar 
Prinzbach, H. et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407, 60–63 (2000).Article 
ADS 
PubMed 

Google Scholar 
Albrecht, F. et al. The odd-number cyclo[13]carbon and its dimer, cyclo[26]carbon. Science 384, 677–682 (2024).Article 
ADS 
PubMed 

Google Scholar 
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).Article 
ADS 

Google Scholar 
Dobrowolski, M. A., Cyranski, M. K. & Wrobel, Z. Cyclic π-electron delocalization in non-planar linear acenes. Phys. Chem. Chem. Phys. 18, 11813–11820 (2016).Article 
PubMed 

Google Scholar 
Liu, M. et al. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons. J. Phys. Chem. C 122, 9586–9592 (2018).Article 
ADS 

Google Scholar 
Preda, D. V. & Scott, L. T. Phenyl migrations in dehydroaromatic compounds. A new mechanistic link between alternant and nonalternant hydrocarbons at high temperatures. Org. Lett. 2, 1489–1492 (2000).Article 
PubMed 

Google Scholar 
Jones, R. R. & Bergman, R. G. p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J. Am. Chem. Soc. 94, 660–661 (1972).Article 

Google Scholar 
Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016).Article 
ADS 
PubMed 

Google Scholar 
Albrecht, F. et al. Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298–301 (2022).Article 
ADS 
PubMed 

Google Scholar 
Wong, H. N. C., Garratt, P. J. & Sondheimer, F. Unsaturated eight-membered ring compounds. XI. Synthesis of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne and sym-dibenzo-1,3,5-cyclooctatrien-7-yne, presumably planar conjugated eight-membered ring compounds. J. Am. Chem. Soc. 96, 5604–5605 (1974).Article 

Google Scholar 
Kawai, S. et al. An endergonic synthesis of single Sondheimer-Wong diyne by local probe chemistry. Angew. Chem. Int. Ed. 59, 10842–10847 (2020).Article 

Google Scholar 
Suresh, R. et al. Cyclo[18]carbon formation from C18Br6 and C18(CO)6 precursors. J. Phys. Chem. Lett. 13, 10318–10325 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).Article 
ADS 
PubMed 

Google Scholar 
Schlutter, F., Nishiuchi, T., Enkelmann, V. & Mullen, K. Octafunctionalized biphenylenes: molecular precursors for isomeric graphene nanostructures. Angew. Chem. Int. Ed. 53, 1538–1542 (2014).Article 

Google Scholar 
Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).Article 
ADS 
PubMed 

Google Scholar 
Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).Article 
ADS 

Google Scholar 
Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).Article 
ADS 

Google Scholar 
Yin, X., Zheng, K., Jin, Z., Horst, M. & Xia, Y. Synthesis of contorted polycyclic conjugated hydrocarbons via regioselective activation of cyclobutadienoids. J. Am. Chem. Soc. 144, 12715–12724 (2022).Article 
PubMed 

Google Scholar 
Sun, J., Grutzmacher, H. F. & Lifshitz, C. Ion/molecule reactions of carbon cluster ions and acrylonitrile. J. Am. Chem. Soc. 115, 8382–8388 (1993).Article 

Google Scholar 
Frisch, M. J. et al. Gaussian 16 Rev. C.01; Gaussian, Inc.:Wallingford, CT. (2016).Chai, J. D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).Article 
PubMed 

Google Scholar 
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).Article 
PubMed 

Google Scholar 
Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).Article 
ADS 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
ADS 

Google Scholar 
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).Article 
ADS 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
ADS 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
ADS 
PubMed 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
ADS 
PubMed 

Google Scholar 

Hot Topics

Related Articles