Intragenic DNA inversions expand bacterial coding capacity

van der Woude, M. W. & Bäumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581–611 (2004).Article 
PubMed 
PubMed Central 

Google Scholar 
Trzilova, D. & Tamayo, R. Site-specific recombination—how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet. 37, 59–72 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zieg, J., Silverman, M., Hilmen, M. & Simon, M. Recombinational switch for gene expression. Science 196, 170–172 (1977).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Stocker, B. A. Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhimurium. J. Hyg. 47, 398–413 (1949).CAS 
PubMed 
PubMed Central 

Google Scholar 
Meydan, S., Vázquez-Laslop, N. & Mankin, A. S. Genes within genes in bacterial genomes. Microbiol. Spectr. 6, rwr-0020-2018 (2018).Article 

Google Scholar 
Zhong, A. et al. Toxic antiphage defense proteins inhibited by intragenic antitoxin proteins. Proc. Natl Acad. Sci. USA 120, e2307382120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006).Article 
CAS 
PubMed 

Google Scholar 
Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259.e14 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schlub, T. E. & Holmes, E. C. Properties and abundance of overlapping genes in viruses. Virus Evol. 6, veaa009 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Medhekar, B. & Miller, J. F. Diversity-generating retroelements. Curr. Opin. Microbiol. 10, 388–395 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andrewes, F. W. Studies in group-agglutination I. The Salmonella group and its antigenic structure. J. Pathol. Bacteriol. 25, 505–521 (1922).Article 

Google Scholar 
Goldberg, A., Fridman, O., Ronin, I. & Balaban, N. Q. Systematic identification and quantification of phase variation in commensal and pathogenic Escherichia coli. Genome Med. 6, 112 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Sekulovic, O. et al. Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet. 14, e1007332 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Jiang, X. et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science 363, 181–187 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Milman, O., Yelin, I. & Kishony, R. Systematic identification of gene-altering programmed inversions across the bacterial domain. Nucleic Acids Res. 51, 553–573 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Komano, T. Shufflons: multiple inversion systems and integrons. Annu. Rev. Genet. 33, 171–191 (1999).Article 
CAS 
PubMed 

Google Scholar 
Atack, J. M., Guo, C., Yang, L., Zhou, Y. & Jennings, M. P. DNA sequence repeats identify numerous type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J. 34, 1038–1051 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chatzidaki-Livanis, M., Coyne, M. J., Roche-Hakansson, H. & Comstock, L. E. Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis. J. Bacteriol. 190, 1020–1026 (2008).Article 
CAS 
PubMed 

Google Scholar 
Taketani, M., Donia, M. S., Jacobson, A. N., Lambris, J. D. & Fischbach, M. A. A phase-variable surface layer from the gut symbiont Bacteroides thetaiotaomicron. mBio 6, e01339-15 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Troy, E. B., Carey, V. J., Kasper, D. L. & Comstock, L. E. Orientations of the Bacteroides fragilis capsular polysaccharide biosynthesis locus promoters during symbiosis and infection. J. Bacteriol. 192, 5832–5836 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Severyn, C. J. et al. Microbiota dynamics in a randomized trial of gut decontamination during allogeneic hematopoietic cell transplantation. JCI Insight 7, e154344 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Siranosian, B. A. et al. Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized adults. Nat. Commun. 13, 586 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martens, E. C., Roth, R., Heuser, J. E. & Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284, 18445–18457 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krinos, C. M. et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Neff, C. P. et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20, 535–547 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).Article 
CAS 
PubMed 

Google Scholar 
Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A Subset of polysaccharide capsules in the human symbiont Bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.e8 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Musumeci, O. et al. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy. Am. J. Hum. Genet. 66, 1900–1904 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smyshlyaev, G., Bateman, A. & Barabas, O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
West, P. T., Chanin, R. B. & Bhatt, A. S. From genome structure to function: insights into structural variation in microbiology. Curr. Opin. Microbiol. 69, 102192 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).Article 
PubMed 

Google Scholar 
Casino, P., Rubio, V. & Marina, A. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20, 763–771 (2010).Article 
CAS 
PubMed 

Google Scholar 
Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A. & Wilson, G. G. Type I restriction enzymes and their relatives. Nucleic Acids Res. 42, 20–44 (2014).Article 
CAS 
PubMed 

Google Scholar 
De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15 (2017).Article 

Google Scholar 
Chen, L. et al. Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nat. Commun. 13, 3175 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maghini, D. G. et al. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nat. Biotechnol. 42, 328–338 (2024).Rodionov, D. A. et al. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front. Microbiol. 10, 1316 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Sharma, V. et al. B-vitamin sharing promotes stability of gut microbial communities. Front. Microbiol. 10, 1485 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Costliow, Z. A. & Degnan, P. H. Thiamine acquisition strategies impact metabolism and competition in the gut microbe Bacteroides thetaiotaomicron. mSystems 2, e00116–17 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martinez-Gomez, N. C. & Downs, D. M. ThiC is an [Fe-S] cluster protein that requires AdoMet to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamin synthesis. Biochemistry 47, 9054–9056 (2008).Article 
CAS 
PubMed 

Google Scholar 
Said, H. M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 437, 357–372 (2011).Article 
CAS 
PubMed 

Google Scholar 
D’Souza, G. et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).Article 
PubMed 

Google Scholar 
Jurgenson, C. T., Ealick, S. E. & Begley, T. P. Biosynthesis of thiamin pyrophosphate. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.6.3.7 (2009).Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. & Gelfand, M. S. Comparative genomics of thiamin biosynthesis in prokaryotes. J. Biol. Chem. 277, 48949–48959 (2002).Article 
CAS 
PubMed 

Google Scholar 
Bacic, M. K. & Smith, C. J. Laboratory maintenance and cultivation of bacteroides species. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc13c01s9 (2008).Zhu, W. et al. Xenosiderophore utilization promotes Bacteroides thetaiotaomicron resilience during colitis. Cell Host Microbe 27, 376–388.e8 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article 
CAS 
PubMed 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).Article 
CAS 
PubMed 

Google Scholar 
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, C., Chu, J., Warren, R. L. & Birol, I. NanoSim: nanopore sequence read simulator based on statistical characterization. Gigascience 6, gix010 (2017).Article 

Google Scholar 
Ono, Y., Asai, K. & Hamada, M. PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores. Bioinformatics 37, 589–595 (2021).Article 
CAS 
PubMed 

Google Scholar 
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).Article 
CAS 
PubMed 

Google Scholar 
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
ADS 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).Article 
CAS 
PubMed 

Google Scholar 
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).Article 
MathSciNet 

Google Scholar 
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lin, Y. et al. Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl Acad. Sci. USA 113, E8396–E8405 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article 
CAS 
PubMed 

Google Scholar 
Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteomics 21, 100279 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).Article 
CAS 
PubMed 

Google Scholar 
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles