A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system

Wong, M. Y., Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017).Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sun, D., Si, C., Wang, T. & Zysman-Colman, E. 1,3,5-triazine-functionalized thermally activated delayed fluorescence emitters for organic light-emitting diodes. Adv. Photonics Res. 3, 2200203 (2022).Article 
CAS 

Google Scholar 
Etherington, M. K., Gibson, J., Higginbotham, H. F., Penfold, T. J. & Monkman, A. P. Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qian, H. et al. Suppression of kasha’s rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission. Nat. Chem. 9, 83–87 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Demchenko, A. P., Tomin, V. I. & Chou, P. T. Breaking the kasha rule for more efficient photochemistry. Chem. Rev. 117, 13353–13381 (2017).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y., Xie, G., Ren, Z. & Yan, S. Thermally activated delayed fluorescence polymer emitters with tunable emission from yellow to warm white regulated by triphenylamine derivatives. Acs. Appl. Polym. Mater. 1, 2204–2212 (2019).Article 
CAS 

Google Scholar 
Luo, M. et al. Integrating time-resolved imaging information by single-luminophore dual thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 59, 17018–17025 (2020).Article 
CAS 

Google Scholar 
Tanaka, H., Shizu, K., Nakanotani, H. & Adachi, C. Dual intramolecular charge-transfer fluorescence derived from a phenothiazine-triphenyltriazine derivative. J. Phys. Chem. C. 118, 15985–15994 (2014).Article 
CAS 

Google Scholar 
Cai, X. et al. Purely organic crystals exhibit bright thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 58, 13522–13531 (2019).Article 
CAS 

Google Scholar 
Li, X. et al. A three-dimensional ratiometric sensing strategy on unimolecular fluorescence-thermally activated delayed fluorescence dual emission. Nat. Commun. 10, 731 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Geng, Y. et al. Donor-sigma-acceptor motifs: thermally activated delayed fluorescence emitters with dual upconversion. Angew. Chem. Int. Ed. 56, 16536–16540 (2017).Article 
CAS 

Google Scholar 
Ma, W., Bin, Z., Yang, G., Liu, J. & You, J. Structurally nontraditional bipolar hosts for rgb phosphorescent oleds: boosted by a “butterfly-shaped” medium-ring acceptor. Angew. Chem. Int. Ed. 61, e202116681 (2022).Article 
ADS 
CAS 

Google Scholar 
Xie, Z. et al. Hydrogen-bonding-assisted intermolecular charge transfer: a new strategy to design single-component white-light-emitting materials. Adv. Funct. Mater. 27, 1703918 (2017).Article 

Google Scholar 
Chen, J. et al. Achieving dual-emissive and time-dependent evolutive organic afterglow by bridging molecules with weak intermolecular hydrogen bonding. Adv. Opt. Mater. 7, 1801593 (2019).Article 

Google Scholar 
Zhang, X. et al. Thermally activated delayed fluorescence of aggregates induced by strong π–π interactions and reversible dual-responsive luminescence switching. CCS Chem. 4, 625–637 (2022).Article 
CAS 

Google Scholar 
Chen, X. et al. Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate). Macromolecules 51, 9035–9042 (2018).Article 
ADS 
CAS 

Google Scholar 
Feng, X. et al. Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chem. Sci. 9, 5679–5687 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Y., Nishiura, M., Wang, Y. & Hou, Z. P. i-conjugated aromatic enynes as a single-emitting component for white electroluminescence. J. Am. Chem. Soc. 128, 5592–5593 (2006).Article 
CAS 
PubMed 

Google Scholar 
Filby, M. H. et al. Induced fit interanion discrimination by binding-induced excimer formation. J. Am. Chem. Soc. 130, 4105–4113 (2008).Article 
CAS 
PubMed 

Google Scholar 
Yang, Q. Y. & Lehn, J. M. Bright white-light emission from a single organic compound in the solid state. Angew. Chem. Int. Ed. 53, 4572–4577 (2014).Article 
CAS 

Google Scholar 
Yoshii, R., Hirose, A., Tanaka, K. & Chujo, Y. Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers. J. Am. Chem. Soc. 136, 18131–18139 (2014).Article 
CAS 
PubMed 

Google Scholar 
Neelakandan, P. P. & Ramaiah, D. DNA-assisted long-lived excimer formation in a cyclophane. Angew. Chem. Int. Ed. 47, 8407–8411 (2008).Article 
CAS 

Google Scholar 
Mansell, D. et al. Fluorescent probe: complexation of Fe3+ with the myo-inositol 1,2,3-trisphosphate motif. Chem. Commun. 41, 5161–5163 (2008).Thirion, D., Romain, M., Rault-Berthelot, J. & Poriel, C. Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design. J. Mater. Chem. 22, 7149–7157 (2012).Article 
CAS 

Google Scholar 
Shih, P. I., Chuang, C. Y., Chien, C. H., Diau, E. W. G. & Shu, C. F. Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups. Adv. Funct. Mater. 17, 3141–3146 (2007).Article 
CAS 

Google Scholar 
Klärner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. Colorfast blue-light-emitting random copolymers derived from di-n-hexylfluorene and anthracene. Adv. Mater. 10, 993–997 (1998).Article 

Google Scholar 
Zhang, J. et al. White-light emission from organic aggregates: a review. Adv. Photonics 4, 014001 (2021).Teng, M. J., Jia, X. R., Yang, S., Chen, X. F. & Wei, Y. Reversible tuning luminescent color and emission intensity: a dipeptide-based light-emitting material. Adv. Mater. 24, 1255–1261 (2012).Article 
CAS 
PubMed 

Google Scholar 
Spano, F. C. The spectral signatures of frenkel polarons in h- and j-aggregates. Acc. Chem. Res. 43, 429–439 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ma, S. et al. Organic molecular aggregates: from aggregation structure to emission property. Aggregate 2, e96 (2021).Article 
CAS 

Google Scholar 
Zhao, C. et al. Thermally activated delayed fluorescence with dual-emission and pressure-induced bidirectional shifting: cooperative effects of intramolecular and intermolecular energy transfer. Chem. Sci. 14, 1089–1096 (2023).Article 
CAS 
PubMed 

Google Scholar 
Sun, Y., Fu, M., Bian, M. & Zhu, Q. Recent progress on small molecular temperature-sensitive fluorescent probes. Biotechnol. Bioeng. 120, 7–21 (2023).Article 
CAS 
PubMed 

Google Scholar 
Feng, G., Zhang, H., Zhu, X., Zhang, J. & Fang, J. Fluorescence thermometers: intermediation of fundamental temperature and light. Biomater. Sci. 10, 1855–1882 (2022).Article 
CAS 
PubMed 

Google Scholar 
Pfeiffer, S. A. & Nagl, S. Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications. Methods Appl. Fluoresc. 3, 034003 (2015).Article 
ADS 
PubMed 

Google Scholar 
Pais, V. F. et al. Organic fluorescent thermometers based on borylated arylisoquinoline dyes. Chem. Eur. J. 20, 7638–7645 (2014).Article 
CAS 
PubMed 

Google Scholar 
Feng, J. et al. Fluorescent temperature sensing using triarylboron compounds and microcapsules for detection of a wide temperature range on the micro- and macroscale. Adv. Funct. Mater. 23, 340–345 (2013).Article 
CAS 

Google Scholar 
Jenkins, J., Borisov, S. M., Papkovsky, D. B. & Dmitriev, R. I. Sulforhodamine nanothermometer for multiparametric fluorescence lifetime imaging microscopy. Anal. Chem. 88, 10566–10572 (2016).Article 
CAS 
PubMed 

Google Scholar 
Feng, J. et al. A triarylboron-based fluorescent thermometer: Sensitive over a wide temperature range. Angew. Chem. Int. Ed. 50, 8072–8076 (2011).Article 
CAS 

Google Scholar 
Meng, L. et al. TICT-based near-infrared ratiometric organic fluorescent thermometer for intracellular temperature sensing. ACS Appl. Mater. Interfaces 12, 26842–26851 (2020).Article 
CAS 
PubMed 

Google Scholar 
Christopherson, C. J. et al. 1,8-naphthalimide-based polymers exhibiting deep-red thermally activated delayed fluorescence and their application in ratiometric temperature sensing. ACS Appl. Mater. Interfaces 12, 20000–20011 (2020).Article 
CAS 
PubMed 

Google Scholar 
Steinegger, A., Klimant, I. & Borisov, S. M. Purely organic dyes with thermally activated delayed fluorescence—a versatile class of indicators for optical temperature sensing. Adv. Opt. Mater. 5, 1700372 (2017).Article 

Google Scholar 
Augusto, V., Baleizão, C., Berberan-Santos, M. N. & Farinha, J. P. S. Oxygen-proof fluorescence temperature sensing with pristine C70 encapsulated in polymernanoparticles. J. Mater. Chem. 20, 1192–1197 (2010).Article 
CAS 

Google Scholar 
Si, C. et al. The influence of nitrogen doping of the acceptor in orange-red thermally activated delayed fluorescence emitters and OLEDs. J. Mater. Chem. C. 11, 12174–12184 (2023).Article 
CAS 

Google Scholar 
Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the pbe0 model. J. Chem. Phys. 110, 6158–6170 (1999).Article 
ADS 
CAS 

Google Scholar 
Petersson, G. & Tensfeldt, T. G. Montgomery Jr, J. A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 94, 6091–6101 (1991).Article 
ADS 
CAS 

Google Scholar 
Kerwin, S. M. Chembiooffice ultra 2010 suite. J. Am. Chem. Soc. 132, 2466–2467 (2010).Article 
CAS 
PubMed 

Google Scholar 
Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within the tamm–dancoff approximation. Chem. Phys. Lett. 314, 291–299 (1999).Article 
ADS 
CAS 

Google Scholar 
Grimme, S. Density functional calculations with configuration interaction for the excited states of molecules. Chem. Phys. Lett. 259, 128–137 (1996).Article 
ADS 
CAS 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. Vmd: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).Article 
CAS 
PubMed 

Google Scholar 
Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).Article 
CAS 
PubMed 

Google Scholar 
Duda, E. et al. Enhancing thermally activated delayed fluorescence by fine-tuning the dendron donor strength. J. Phys. Chem. B 126, 552–562 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sun, D. et al. Thermally activated delayed fluorescent dendrimers that underpin high-efficiency host-free solution-processed organic light-emitting diodes. Adv. Mater. 34, e2110344 (2022).Article 
PubMed 

Google Scholar 
Notsuka, N., Nakanotani, H., Noda, H., Goushi, K. & Adachi, C. Observation of nonradiative deactivation behavior from singlet and triplet states of thermally activated delayed fluorescence emitters in solution. J. Phys. Chem. Lett. 11, 562–566 (2020).Article 
CAS 
PubMed 

Google Scholar 
Förster, T. Excimers. Angew. Chem. Int. Ed. 8, 333–343 (1969).Article 

Google Scholar 
Chen, Z., Fimmel, B. & Wurthner, F. Solvent and substituent effects on aggregation constants of perylene bisimide pi-stacks–a linear free energy relationship analysis. Org. Biomol. Chem. 10, 5845–5855 (2012).Article 
CAS 
PubMed 

Google Scholar 
Simionesie, D. et al. Combined experimental and computational study of polycyclic aromatic compound aggregation: the impact of solvent composition. Polycycl. Aromat. Comp. 43, 3790–3809 (2022).Article 

Google Scholar 
Yang, J., Fang, M. & Li, Z. Organic luminescent materials: the concentration on aggregates from aggregation-induced emission. Aggregate 1, 6–18 (2020).Article 

Google Scholar 
Sun, X. et al. Polymerization-enhanced intersystem crossing: New strategy to achieve long-lived excitons. Macromol. Rapid Commun. 36, 298–303 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhou, C. et al. Waterborne polyurethanes with tunable fluorescence and room-temperature phosphorescence. ACS Appl. Mater. Interfaces 7, 17209–17216 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wang, T., Zhou, C., Zhang, X. & Xu, D. Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence. Polym. Chem. 9, 1303–1308 (2018).Article 
CAS 

Google Scholar 
Hong, Y., Lam, J. W. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 7, 4332–4353 (2009).Article 

Google Scholar 
Mazza, M. M. A. & Raymo, F. M. Structural designs for ratiometric temperature sensing with organic fluorophores. J. Mater. Chem. C. 7, 5333–5342 (2019).Article 
CAS 

Google Scholar 
Vetrone, F. et al. Temperature sensing using fluorescent nanothermometers. ACS Nano 4, 3254–3258 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ito, A., Ishizaka, S. & Kitamura, N. A ratiometric TICT-type dual fluorescent sensor for an amino acid. Phys. Chem. Chem. Phys. 12, 6641–6649 (2010).Article 
CAS 
PubMed 

Google Scholar 
Sun, H. Compass:  an ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998).Article 
CAS 

Google Scholar 
Sun, H. et al. Compass II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model 22, 47 (2016).Article 
PubMed 

Google Scholar 
Seymour, R. W. & Cooper, S. L. Thermal-analysis of polyurethane block polymers. Macromolecules 6, 48–53 (1973).Article 
ADS 
CAS 

Google Scholar 
Ruan, H., Zhang, Y., Wang, Q., Wang, C. & Wang, T. A novel earthworm-inspired smart lubrication material with self-healing function. Tribol. Int. 165, 107303 (2022).Article 
CAS 

Google Scholar 
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).Dennington, R., Keith, T. A. & Millam, J. M. GaussView, Version 6.0.16 (Semichem Inc., Shawnee Mission, KS, 2016).O’Boyle, N. M. & Hutchison, G. R. Cinfony–combining open source cheminformatics toolkits behind a common interface. Chem. Cent. J. 2, 24 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
O’Boyle, N. et al. Open babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Allouche, A. R. Gabedit—a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2011).Article 
CAS 
PubMed 

Google Scholar 
Hunter, J. D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

Google Scholar 
Schirmer, J. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A 26, 2395 (1982).Article 
ADS 
CAS 

Google Scholar 
Gao, X. et al. Evaluation of spin-orbit couplings with linear-response time-dependent density functional methods. J. Chem. Theory Comput. 13, 515–524 (2017).Article 
CAS 
PubMed 

Google Scholar 
Trofimov, A. B. & Schirmer, J. An efficient polarization propagator approach to valence electron excitation spectra. J. Phys. B 28, 2299 (1995).Article 
ADS 
CAS 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 
Pommerehne, J. et al. Efficient two layer leds on a polymer blend basis. Adv. Mater. 7, 551–554 (1995).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles