Differential expression of ion channel coding genes in the endometrium of women experiencing recurrent implantation failures

Shaulov, T., Sierra, S. & Sylvestre, C. Recurrent implantation failure in IVF: A Canadian fertility and andrology society clinical practice guideline. Reprod. Biomed. Online 41(5), 819–833 (2020).PubMed 

Google Scholar 
Transfer, E.G.G.o.t.N.o.E.t., et al., 2024, ESHRE guideline: number of embryos to transfer during IVF/ICSI. Human Reprod., 39(4), 647–657.Datta, A. et al. Accumulation of embryos over 3 natural modified IVF (ICSI) cycles followed by transfer to improve the outcome of poor responders. Facts Views Vision Obgyn. 11(1), 77 (2019).
Google Scholar 
Timeva, T., Shterev, A. & Kyurkchiev, S. Recurrent implantation failure: the role of the endometrium. J. Reprod. Infertil. 15(4), 173–183 (2014).PubMed 
PubMed Central 

Google Scholar 
Busnelli, A. et al. How common is real repeated implantation failure? An indirect estimate of the prevalence. Reprod. Biomed. Online 40(1), 91–97 (2020).PubMed 

Google Scholar 
Herington, J. L. et al. Gene profiling the window of implantation: Microarray analyses from human and rodent models. J. Reprod. Health Med. 2(Suppl 2), S19-s25 (2016).PubMed 
PubMed Central 

Google Scholar 
Ruan, Y. C., Chen, H. & Chan, H. C. Ion channels in the endometrium: Regulation of endometrial receptivity and embryo implantation. Hum. Reprod. Update 20(4), 517–529 (2014).PubMed 

Google Scholar 
Bhagwat, S. R. et al. Endometrial receptivity: a revisit to functional genomics studies on human endometrium and creation of HGEx-ERdb. PLoS ONE 8(3), e58419 (2013).ADS 
PubMed 
PubMed Central 

Google Scholar 
Amirian, M. et al. VASA protein and gene expression analysis of human non-obstructive azoospermia and normal by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Sci. Rep. 12(1), 17259 (2022).ADS 
PubMed 
PubMed Central 

Google Scholar 
Azizi, H., Hashemi Karoii, D. & Skutella, T. Whole exome sequencing and in silico analysis of human sertoli in patients with non-obstructive azoospermia. Int. J. Mol. Sci. 23(20), 12570 (2022).PubMed 
PubMed Central 

Google Scholar 
Danial Hashemi, K. and A. Hossein, Undifferentiated and Differentiated Spermatogonial Stem Cells, in Advances in Pluripotent Stem Cells, Z. Prof. Leisheng, Editor. 2023, IntechOpen, 10Shekibi, M., Heng, S. & Nie, G. MicroRNAs in the regulation of endometrial receptivity for embryo implantation. Int. J. Mol. Sci. 23(11), 6210 (2022).PubMed 
PubMed Central 

Google Scholar 
Fujiwara, H. et al. Promoting roles of embryonic signals in embryo implantation and placentation in cooperation with endocrine and immune systems. Int. J. Mol. Sci. 21(5), 1885 (2020).PubMed 
PubMed Central 

Google Scholar 
Hashemi Karoii, D. & Azizi, H. A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells. J. Recept. Signal Transduct. 42(5), 512–520 (2022).
Google Scholar 
Hashemi Karoii, D., Azizi, H. & Skutella, T. Altered G-protein transduction protein gene expression in the testis of infertile patients with nonobstructive azoospermia. DNA Cell Biol. 42(10), 617–637 (2023).PubMed 

Google Scholar 
Ruan, Y., Chen, H. & Chan, H. Ion channels in the endometrium: Regulation of endometrial receptivity and embryo implantation. Human Reprod. Update 20, 517–529 (2014).
Google Scholar 
Zhang, S. et al. Physiological and molecular determinants of embryo implantation. Mol. Aspects Med. 34(5), 939–980 (2013).PubMed 
PubMed Central 

Google Scholar 
Nie, G. & Dimitriadis, E. Molecular and Cellular Basis of Human Embryo Implantation. In How to Prepare the Endometrium to Maximize Implantation Rates and IVF Success (eds Kovacs, G. & Salamonsen, L.) 10–18 (Cambridge University Press, 2019).
Google Scholar 
Gao, Y., Li, S. & Li, Q. Uterine epithelial cell proliferation and endometrial hyperplasia: Evidence from a mouse model. Mol. Hum. Reprod. 20(8), 776–786 (2014).PubMed 
PubMed Central 

Google Scholar 
Hashemi Karoii, D. & Azizi, H. OCT4 protein and gene expression analysis in the differentiation of spermatogonia stem cells into neurons by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Stem Cell Rev. Rep. 19(6), 1828–1844 (2023).PubMed 

Google Scholar 
Yoshinaga, K. A historical review of blastocyst implantation research. Biol. Reprod. 99(1), 175–195 (2018).PubMed 
PubMed Central 

Google Scholar 
Ruan, Y. C. et al. Activation of the epithelial Na+ channel triggers prostaglandin E₂ release and production required for embryo implantation. Nat. Med. 18(7), 1112–1117 (2012).PubMed 

Google Scholar 
Hennes, A. et al. Protease secretions by the invading blastocyst induce calcium oscillations in endometrial epithelial cells via the protease-activated receptor 2. Reprod. Biol. Endocrinol. 21(1), 37 (2023).PubMed 
PubMed Central 

Google Scholar 
Saint-Criq, V. & Gray, M. A. Role of CFTR in epithelial physiology. Cell Mol. Life Sci. 74(1), 93–115 (2017).PubMed 

Google Scholar 
Ramalho, A. S. et al. Assays of CFTR function in vitro, ex vivo and in vivo. Int. J. Mol. Sci. 23(3), 1437 (2022).PubMed 
PubMed Central 

Google Scholar 
Qu, X. et al. Correlation between CFTR variants and outcomes of ART in patients with CAVD in Central China. Sci. Rep. 13(1), 64 (2023).ADS 
PubMed 
PubMed Central 

Google Scholar 
Collawn, J. F. et al. The CFTR and ENaC debate: How important is ENaC in CF lung disease?. Am. J. Physiol. Lung Cell Mol. Physiol. 302(11), L1141–L1146 (2012).PubMed 
PubMed Central 

Google Scholar 
Chan, L. N. et al. Suppression of CFTR-mediated Cl− secretion by enhanced expression of epithelial Na+ channels in mouse endometrial epithelium. Biochem. Biophys. Res. Commun. 276(1), 40–44 (2000).PubMed 

Google Scholar 
Perez-Reyes, E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83(1), 117–161 (2003).PubMed 

Google Scholar 
Hashemi Karoii, D., Azizi, H. & Skutella, T. Microarray and in silico analysis of DNA repair genes between human testis of patients with nonobstructive azoospermia and normal cells. Cell Biochem. Funct. 40(8), 865–879 (2022).PubMed 

Google Scholar 
Karoii, D. H., Azizi, H. & Amirian, M. Signaling pathways and protein–protein interaction of vimentin in invasive and migration cells: A review. Cell. Reprogr. 24(4), 165–174 (2022).
Google Scholar 
Niazi Tabar, A. et al. Testicular localization and potential function of vimentin positive cells during spermatogonial differentiation stages. Animals 12(3), 268 (2022).PubMed 
PubMed Central 

Google Scholar 
Neely, A. & Hidalgo, P. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front. Physiol. 5, 209 (2014).PubMed 
PubMed Central 

Google Scholar 
Lory, P., Nicole, S. & Monteil, A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch. 472(7), 831–844 (2020).PubMed 
PubMed Central 

Google Scholar 
Okada, H., Tsuzuki, T. & Murata, H. Decidualization of the human endometrium. Reprod. Med. Biol. 17(3), 220–227 (2018).PubMed 
PubMed Central 

Google Scholar 
Thie, M. et al. Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. Hum. Reprod. 13(11), 3211–3219 (1998).PubMed 

Google Scholar 
Kusama, K. et al. Regulatory action of calcium ion on cyclic AMP-enhanced expression of implantation-related factors in human endometrial cells. PLoS One 10(7), e0132017 (2015).PubMed 
PubMed Central 

Google Scholar 
Liu, B., Hill, S. J. & Khan, R. N. Oxytocin inhibits T-type calcium current of human decidual stromal cells. J. Clin. Endocrinol. Metab. 90(7), 4191–4197 (2005).PubMed 

Google Scholar 
Kim, J. M. et al. Role of potassium channels in female reproductive system. Obstet. Gynecol. Sci. 63(5), 565–576 (2020).PubMed 
PubMed Central 

Google Scholar 
Lewis, A. et al. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development 133(21), 4203–4210 (2006).PubMed 

Google Scholar 
Hennes, A. et al. Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Sci. Rep. 9(1), 1779 (2019).ADS 
PubMed 
PubMed Central 

Google Scholar 
Sun, A. et al. Transcriptome-wide N6-methyladenosine modification profiling of long non-coding RNAs during replication of Marek’s disease virus in vitro. BMC Genom. 22(1), 296 (2021).
Google Scholar 
Zhao, F. et al. LINC02190 inhibits the embryo-endometrial attachment by decreasing ITGAD expression. Reproduction 163(2), 107–118 (2022).MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
von Grothusen, C. et al. Uterine fluid microRNAs are dysregulated in women with recurrent implantation failure. Hum. Reprod. 37(4), 734–746 (2022).
Google Scholar 
Varma, S. Blind estimation and correction of microarray batch effect. PLoS One 15(4), e0231446 (2020).PubMed 
PubMed Central 

Google Scholar 
Safari-Alighiarloo, N. et al. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench 7(1), 17–31 (2014).PubMed 
PubMed Central 

Google Scholar 
Szklarczyk, D. et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1), D605–D612 (2021).PubMed 

Google Scholar 
Doncheva, N. T. et al. Cytoscape stringApp 2.0: Analysis and visualization of heterogeneous biological networks. J. Proteome Res. 22(2), 637–646 (2022).PubMed 
PubMed Central 

Google Scholar 
Hashemi Karoii, D. & Azizi, H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem. Funct. 41(7), 767–778 (2023).PubMed 

Google Scholar 
Azizi, H., Hashemi Karoii, D. & Skutella, T. Clinical management, differential diagnosis, follow-up and biomarkers of infertile men with nonobstructive azoospermia. Transl. Androl. Urol. 13(2), 359–362 (2024).PubMed 
PubMed Central 

Google Scholar 
Karoii, D. H., Azizi, H. & Skutella, T. Whole transcriptome analysis to identify non-coding RNA regulators and hub genes in sperm of non-obstructive azoospermia by microarray, single-cell RNA sequencing, weighted gene co-expression network analysis, and mRNA-miRNA-lncRNA interaction analysis. BMC Genom. 25(1), 583 (2024).
Google Scholar 
Mahforoozmahalleh, Z.H. and H. Azizi, An overview of novel transcription factors involved in spermatogonial stem cells. 2024.Osterman, T. J., Terry, M. & Miller, R. S. Improving cancer data interoperability: The promise of the minimal common oncology data elements (mCODE) initiative. JCO Clin. Cancer Inform. 4, 993–1001 (2020).PubMed 

Google Scholar 
Chen, H. et al. Effect of red kaolin on the diversity of functional genes based on Kyoto Encyclopedia of Genes and Genomes pathways during chicken manure composting. Bioresour. Technol. 311, 123584 (2020).PubMed 

Google Scholar 
Sherman, B. T. et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50(W1), W216–W221 (2022).ADS 
PubMed 
PubMed Central 

Google Scholar 
Naithani, S. et al. Plant Reactome: A knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res. 48(D1), D1093–D1103 (2020).PubMed 

Google Scholar 
Tokar, T. et al. mirDIP 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res. 46(D1), 360–370 (2018).
Google Scholar 
Ding, J., Li, X. & Hu, H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 32(18), 2768–2775 (2016).PubMed 
PubMed Central 

Google Scholar 
Simon, A. & Laufer, N. Assessment and treatment of repeated implantation failure (RIF). J. Assist. Reprod. Genet. 29(11), 1227–1239 (2012).PubMed 
PubMed Central 

Google Scholar 
Agarwal, A., Gupta, S. & Sharma, R. K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 3, 28 (2005).PubMed 
PubMed Central 

Google Scholar 
Ribeiro, J. C. et al. Antioxidants present in reproductive tract fluids and their relevance for fertility. Antioxidants (Basel) 10(9), 1441 (2021).PubMed 

Google Scholar 
De Clercq, K. & Vriens, J. 2018, Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. Biochim. et Biophys. Acta (BBA) –Mol. Cell Res. 11, 1815–1829 (1865).
Google Scholar 
Zhang, R.-J. et al. Functional expression of large-conductance calcium-activated potassium channels in human endometrium: A novel mechanism involved in endometrial receptivity and embryo implantation. J. Clin. Endocrinol. Metab. 97(2), 543–553 (2012).PubMed 

Google Scholar 
Tran, D. N. et al. Effects of bisphenol A and 4-tert-octylphenol on embryo implantation failure in mouse. Int. J. Environ. Res. Public Health 15(8), 1614 (2018).PubMed 
PubMed Central 

Google Scholar 
Paria, B. C. et al. Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation*. J. Biol. Chem. 276(23), 20523–20528 (2001).PubMed 

Google Scholar 
Zhou, M. et al. Increased cystic fibrosis transmembrane conductance regulators expression and decreased epithelial sodium channel alpha subunits expression in early abortion: Findings from a mouse model and clinical cases of abortion. PLOS One 9(6), e99521 (2014).ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, M. et al. Increased cystic fibrosis transmembrane conductance regulators expression and decreased epithelial sodium channel alpha subunits expression in early abortion: Findings from a mouse model and clinical cases of abortion. PLOS One 9, e99521 (2014).ADS 
PubMed 
PubMed Central 

Google Scholar 
Mrozikiewicz, A. E., Ożarowski, M. & Jędrzejczak, P. Biomolecular markers of recurrent implantation failure-a review. Int. J. Mol. Sci. 22(18), 10082 (2021).PubMed 
PubMed Central 

Google Scholar 
Dong, X. et al. Gene profiling reveals the role of inflammation, abnormal uterine muscle contraction and vascularity in recurrent implantation failure. Front. Genet. 14, 1108805 (2023).PubMed 
PubMed Central 

Google Scholar 
Zhang, T. et al. Endometrial thickness as a predictor of the reproductive outcomes in fresh and frozen embryo transfer cycles: A retrospective cohort study of 1512 IVF cycles with morphologically good-quality blastocyst. Medicine (Baltimore) 97(4), e9689 (2018).PubMed 

Google Scholar 
Gaston, V. et al. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 9(6), 409–418 (2001).PubMed 

Google Scholar 
Do, Q. A. et al. DNA methylation of window of implantation genes in cervical secretions predicts ongoing pregnancy in infertility treatment. Int. J. Mol. Sci. 24(6), 5598 (2023).PubMed 
PubMed Central 

Google Scholar 
Rull, K. et al. Increased placental expression and maternal serum levels of apoptosis-inducing TRAIL in recurrent miscarriage. Placenta 34(2), 141–148 (2013).PubMed 
PubMed Central 

Google Scholar 
Zamani Esteki, M. et al. In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages. Nat. Med. 25(11), 1699–1705 (2019).PubMed 

Google Scholar 

Hot Topics

Related Articles