High-entropy non-covalent cyclic peptide glass

Francl, M. Heart of glass. Nat. Chem. 14, 717–718 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, S., Fan, W., Chang, R., Yuan, C. & Yan, X. Metal ion-coordinated biomolecular noncovalent glass with ceramic-like mechanics. CCS Chem. https://doi.org/10.31635/ccschem.024.202303832 (2024).Wang, C., Yokota, T. & Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).Article 
CAS 
PubMed 

Google Scholar 
La, T.-G. & Le, L. H. Flexible and wearable ultrasound device for medical applications: a review on materials, structural designs, and current challenges. Adv. Mater. Technol. 7, 2100798 (2022).Article 

Google Scholar 
Song, Q. et al. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chem. Rev. 121, 13936–13995 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sheehan, F. et al. Peptide-based supramolecular systems chemistry. Chem. Rev. 121, 13869–13914 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hu, K. et al. Tuning peptide self-assembly by an in-tether chiral center. Sci. Adv. 4, eaar5907 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Borthwick, A. D. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 112, 3641–3716 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bellezza, I., Peirce, M. J. & Minelli, A. Cyclic dipeptides: from bugs to brain. Trends Mol. Med. 20, 551–558 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fan, Z. et al. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat. Commun. 9, 2605 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Tao, K. et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 9, 3217 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Merz, M. L. et al. De novo development of small cyclic peptides that are orally bioavailable. Nat. Chem. Biol. 20, 624–633 (2024).Article 
CAS 
PubMed 

Google Scholar 
Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y. et al. Self-assembly of cyclic dipeptides: platforms for functional materials. Protein Pept. Lett. 27, 688–697 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yan, X., Su, Y., Li, J., Früh, J. & Möhwald, H. Uniaxially oriented peptide crystals for active optical waveguiding. Angew. Chem. Int. Ed. 50, 11186–11191 (2011).Article 
CAS 

Google Scholar 
Yang, M. et al. Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. J. Colloid Interface Sci. 557, 458–464 (2019).Article 
CAS 
PubMed 

Google Scholar 
Manchineella, S. & Govindaraju, T. Molecular self-assembly of cyclic dipeptide derivatives and their applications. ChemPlusChem. 82, 88–106 (2016).Article 
PubMed 

Google Scholar 
Chang, R., Yuan, C., Zhou, P., Xing, R. & Yan, X. Peptide self-assembly: from ordered to disordered. Acc. Chem. Res. 57, 289–301 (2024).Article 
CAS 
PubMed 

Google Scholar 
Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).Article 
CAS 

Google Scholar 
Greer, A. L. Confusion by design. Nature 366, 303–304 (1993).Article 

Google Scholar 
Perim, E. et al. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ke, Y. et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9, 1902066 (2019).Article 
CAS 

Google Scholar 
Kasimuthumaniyan, S., Reddy, A. A., Krishnan, N. M. A. & Gosvami, N. N. Understanding the role of post-indentation recovery on the hardness of glasses: case of silica, borate, and borosilicate glasses. J. Non-Cryst. Solids 534, 119955 (2020).Article 
CAS 

Google Scholar 
Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469–479 (2011).Article 
CAS 
PubMed 

Google Scholar 
Fang, W. et al. Organic–inorganic covalent–ionic molecules for elastic ceramic plastic. Nature 619, 293–299 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hong, Y. P. et al. Crystal structure and spectroscopic properties of cyclic dipeptide: a racemic mixture of cyclo(d-prolyl-l-tyrosyl) and cyclo(l-prolyl-d-tyrosyl). Bull. Korean Chem. Soc. 35, 2299–2303 (2014).Article 
CAS 

Google Scholar 
Rozenberg, M., Shoham, G., Reva, I. & Fausto, R. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides. Phys. Chem. Chem. Phys. 7, 2376–2383 (2005).Article 
CAS 
PubMed 

Google Scholar 
Bertoldo Menezes, D. et al. Raman spectroscopic insights into the glass transition of poly(methyl methacrylate). Phys. Chem. Chem. Phys. 23, 1649–1665 (2021).Article 
CAS 
PubMed 

Google Scholar 
Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).Article 
CAS 
PubMed 

Google Scholar 
Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).Article 
CAS 

Google Scholar 
Smedskjaer, M. M. et al. Topological principles of borosilicate glass chemistry. J. Phys. Chem. B 115, 12930–12946 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wang, L.-M., Angell, C. A. & Richert, R. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).Article 
PubMed 

Google Scholar 
Böhmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).Article 

Google Scholar 
Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).Article 
CAS 
PubMed 

Google Scholar 
Huang, D. & McKenna, G. B. New insights into the fragility dilemma in liquids. J. Chem. Phys. 114, 5621–5630 (2001).Article 
CAS 

Google Scholar 
Rodrigues, A. C., Viciosa, M. T., Danède, F., Affouard, F. & Correia, N. T. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach. Mol. Pharm. 11, 112–130 (2014).Article 
CAS 
PubMed 

Google Scholar 
Shi, Y. et al. Revealing the relationship between liquid fragility and medium-range order in silicate glasses. Nat. Commun. 14, 13 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Novikov, V. N. Upper bound of fragility from spatial fluctuations of shear modulus and boson peak in glasses. Phys. Rev. E 106, 024611 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kaushal, A. M. & Bansal, A. K. Thermodynamic behavior of glassy state of structurally related compounds. Eur. J. Pharm. Biopharm. 69, 1067–1076 (2008).Article 
CAS 
PubMed 

Google Scholar 
Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).Article 
CAS 

Google Scholar 
Yang, M. et al. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J. Appl. Phys. 119, 245112 (2016).Article 

Google Scholar 
Ràfols-Ribé, J. et al. High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Willcott, M. R. MestRe Nova. J. Am. Chem. Soc. 131, 13180 (2009).Article 
CAS 

Google Scholar 
Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).Article 
CAS 

Google Scholar 
Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).Article 
CAS 
PubMed 

Google Scholar 
Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).Article 
PubMed 

Google Scholar 
Ulmschneider, J. P. & Jorgensen, W. L. Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation. J. Am. Chem. Soc. 126, 1849–1857 (2004).Article 
CAS 
PubMed 

Google Scholar 
Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).Article 
CAS 
PubMed 

Google Scholar 
Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).Article 
CAS 

Google Scholar 
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).Article 
CAS 

Google Scholar 
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).Article 
CAS 

Google Scholar 
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article 
PubMed 

Google Scholar 
Tao, K. et al. Bioinspired supramolecular packing enables high thermo-sustainability. Angew. Chem. Int. Ed. 59, 19037–19041 (2020).Article 
CAS 

Google Scholar 
Burley, S. K. & Petsko, G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).Article 
CAS 
PubMed 

Google Scholar 
Ogliaro, F. et al. Gaussian 09, revision A. 02. (Gaussian, 2009).Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).Article 
CAS 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 
Yuan, C. et al. Cyclic Peptide High-Entropy Noncovalent Glass. Figshare https://doi.org/10.6084/m9.figshare.26181884 (2024).

Hot Topics

Related Articles