Cooperative spin crossover leading to bistable and multi-inert system states in an iron(III) complex

Gopakumar, T. G. et al. Electron-induced spin crossover of single molecules in a bilayer on gold. Angew. Chem. Int. Ed. 51, 6262–6266 (2012).Article 
CAS 

Google Scholar 
Kumar, K. S. & Ruben, M. Sublimable Spin-Crossover Complexes: From Spin-State Switching to Molecular Devices. Angew. Chem. Int. ed. 60, 7502–7521 (2021).Article 
CAS 

Google Scholar 
Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).Article 
ADS 

Google Scholar 
Halcrow, M. A. Manipulating metal spin states for biomimetic, catalytic and molecular materials chemistry. Dalton Trans. 49, 15560–15567 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gütlich, P. & Goodwin, H. A. Spin Crossover in Transition Metal Compounds I–III (Springer, Berlin, 2004).Halcrow, M. A. Spin-crossover materials. Properties and applications (Wiley, Chichester, 2013).Gütlich, P., Hauser, A. & Spiering, H. T. Thermal and optical switching of iron(II) complexes. Angew. Chem. Int. Ed. 33, 2024–2054 (1994).Article 

Google Scholar 
Gakiya-Teruya, M. et al. Asymmetric design of spin-crossover complexes to increase the volatility for surface deposition. J. Am. Chem. Soc. 143, 14563–14572 (2021).Article 
CAS 
PubMed 

Google Scholar 
Collet, E. & Guionneau, P. Structural analysis of spin-crossover materials: from molecules to materials. C. R. Chim. 21, 1133–1151 (2018).Article 
CAS 

Google Scholar 
Enachescu, C., Nishino, M. & Miyashita, S. Theoretical descriptions of spin-transitions in bulk lattices. In Spin-crossover materials. Properties and applications, edited by M. A. Halcrow (Wiley, Chichester, 2013), pp. 455–474.Halcrow, M. A. Structure:function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 40, 4119–4142 (2011).Article 
CAS 
PubMed 

Google Scholar 
Pinkowicz, D. et al. Enforcing multifunctionality: a pressure-induced spin-crossover photomagnet. J. Am. Chem. Soc. 137, 8795–8802 (2015).Article 
CAS 
PubMed 

Google Scholar 
Matsumoto, T. et al. Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat. Commun. 5, 3865 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sciortino, N. F. et al. Hysteretic three-step spin crossover in a thermo- and photochromic 3D pillared Hofmann-type metal-organic framework. Angew. Chem. Int. Ed. 51, 10154–10158 (2012).Article 
CAS 

Google Scholar 
Chen, Y.-C. et al. Light- and temperature-assisted spin state annealing: accessing the hidden multistability. Chem. Sci. 11, 3281–3289 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paradis, N., Chastanet, G. & Létard, J.-F. When stable and metastable HS states meet in spin-crossover compounds. Eur. J. Inorg. Chem. 2012, 3618–3624 (2012).Article 
CAS 

Google Scholar 
Paradis, N. et al. Detailed investigation of the interplay between the thermal decay of the low temperature metastable HS state and the thermal hysteresis of spin-crossover solids. J. Phys. Chem. C. 119, 20039–20050 (2015).Article 
CAS 

Google Scholar 
Kiehl, J. et al. Pronounced magnetic bistability in highly cooperative mononuclear Fe(Lnpdtz)2(NCX)2 complexes. Inorg. Chem. 61, 3141–3151 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sun, X.-P. et al. Discovery of kinetic effect in a valence tautomeric cobalt-dioxolene complex. Inorg. Chem. 61, 4240–4245 (2022).Article 
CAS 
PubMed 

Google Scholar 
Pillet, S., Bendeif, E.-E., Bonnet, S., Shepherd, H. J. & Guionneau, P. Multimetastability, phototrapping, and thermal trapping of a metastable commensurate superstructure in a FeII spin-crossover compound. Phys. Rev. B 86; https://doi.org/10.1103/PhysRevB.86.064106 (2012).Nihei, M. et al. Multiple bistability and tristability with dual spin-state conversions in [Fe(dpp)2]Ni(mnt)2]2·MeNO2. J. Am. Chem. Soc. 132, 3553–3560 (2010).Article 
CAS 
PubMed 

Google Scholar 
Brooker, S. Spin crossover with thermal hysteresis: practicalities and lessons learnt. Chem. Soc. Rev. 44, 2880–2892 (2015).Article 
CAS 
PubMed 

Google Scholar 
Dankhoff, K. & Weber, B. Isostructural iron(III) spin crossover complexes with a tridentate Schiff base-like ligand: X-ray structures and magnetic properties. Dalton Trans. 48, 15376–15380 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ye, Y. S. et al. Slow dynamics of the spin-crossover process in an apparent high-spin mononuclear FeII complex. Angew. Chem. Int. Ed. 58, 18888–18891 (2019).Article 
CAS 

Google Scholar 
Holland, J. M. et al. Stereochemical effects on the spin-state transition shown by salts of [FeL2]2+ [L = 2,6-di(pyrazol-1-yl)pyridine]. J. Chem. Soc., Dalton Trans., 548–554; https://doi.org/10.1039/b108468m (2002).Halcrow, M. A. Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research. Coord. Chem. Rev. 253, 2493–2514 (2009).Article 
CAS 

Google Scholar 
Money, V. A. et al. Interplay between kinetically slow thermal spin-crossover and metastable high-spin state relaxation in an iron(II) complex with similar T1/2 and T(LIESST). Chem. Eur. J. 13, 5503–5514 (2007).Article 
CAS 
PubMed 

Google Scholar 
Vicente, A. I. et al. Dynamic spin interchange in a tridentate Fe(III) Schiff-base compound. Chem. Sci. 7, 4251–4258 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shatruk, M., Phan, H., Chrisostomo, B. A. & Suleimenova, A. Symmetry-breaking structural phase transitions in spin crossover complexes. Coord. Chem. Rev. 289-290, 62–73 (2015).Article 
CAS 

Google Scholar 
Imatomi, S., Sato, T., Hamamatsu, T., Kitashima, R. & Matsumoto, N. Spin-crossover behavior of isomorphous bi- and mononuclear iron(III) complexes. Bull. Chem. Soc. Jpn 80, 2375–2377 (2007).Article 
CAS 

Google Scholar 
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).Article 
CAS 

Google Scholar 
Weber, B., Bauer, W. & Obel, J. An iron(II) spin-crossover complex with a 70 K wide thermal hysteresis loop. Angew. Chem. Int. Ed. 47, 10098–10101 (2008).Article 
CAS 

Google Scholar 
Timken, M. D., Hendrickson, D. N. & Sinn, E. Dynamics of spin-state interconversion and cooperativity for ferric spin-crossover complexes in the solid state. 3. Bis[N-(2-(benzylamino)ethyl)salicylaldiminato]iron(III) complexes. Inorg. Chem. 24, 3947–3955 (1985).Sertphon, D. et al. Anionic tuning of spin crossover in FeIII–quinolylsalicylaldiminate complexes. Eur. J. Inorg. Chem. 2013, 788–795 (2013).Article 
CAS 

Google Scholar 
Schönfeld, S., Lochenie, C., Thoma, P. & Weber, B. 1D iron(II) spin crossover coordination polymers with 3,3’-azopyridine – kinetic trapping effects and spin transition above room temperature. CrystEngComm 17, 5389–5395 (2015).Article 

Google Scholar 
Weihermüller, J., Schlamp, S., Dittrich, B. & Weber, B. Kinetic trapping effects in amphiphilic iron(II) spin crossover compounds. Inorg. Chem. 58, 1278–1289 (2019).Article 
PubMed 

Google Scholar 
Boonprab, T. et al. The first observation of hidden hysteresis in an iron(III) spin-crossover complex. Angew. Chem. Int. Ed. 131, 11937–11941 (2019).Article 
ADS 

Google Scholar 
Tissot, A., Fertey, P., Guillot, R., Briois, V. & Boillot, M.-L. Structural, magnetic, and vibrational investigations of FeIII spin-crossover compounds [Fe(4-MeO-SalEen)2]X with X = NO3- and PF6-. Eur. J. Inorg. Chem. 2014, 101–109 (2014).Article 
CAS 

Google Scholar 
Hayami, S. & Maeda, Y. Time-dependence of the magnetism of [Fe(pap)2]ClO4 and its solvent adducts; unexpected solid state effect in high-spin⇔low-spin state transition. Inorg. Chim. Acta 255, 181–184 (1997).Article 
CAS 

Google Scholar 
Murnaghan, K. D. et al. Spin-state ordering on one sub-lattice of a mononuclear iron(III) spin crossover complex exhibiting LIESST and TIESST. Chem. Eur. J. 20, 5613–5618 (2014).Article 
CAS 
PubMed 

Google Scholar 
Díaz-Torres, R. et al. Spin crossover in iron(III) quinolylsalicylaldiminates: the curious case of Fe(qsal-F)2(Anion). Inorg. Chem. 59, 13784–13791 (2020).Article 
PubMed 

Google Scholar 
Müller, E. W., Spiering, H. & Gütlich, P. Spin transition in [Fe(phen)2(NCS)2] and [Fe(bipy)2(NCS)2]: hysteresis and effect of crystal quality. Chem. Phys. Lett. 93, 567–571 (1982).Article 
ADS 

Google Scholar 
Goldanskii, V. I. & Herber, R. H. Chemical applications of Mössbauer spectroscopy (Academic Press, London, 1968).Greenwood, N. N. & Gibb, T. C. Mössbauer Spectroscopy (Springer, Berlin, 2013).Blume, M. & Tjon, J. A. Mössbauer spectra in a fluctuating environment. Phys. Rev. 165, 446–456 (1968).Article 
ADS 

Google Scholar 
Harding, D. J., Harding, P. & Phonsri, W. Spin crossover in iron(III) complexes. Coord. Chem. Rev. 313, 38–61 (2016).Article 
CAS 

Google Scholar 
Nihei, M., Shiga, T., Maeda, Y. & Osio, H. Spin crossover iron(III) complexes. Coord. Chem. Rev. 251, 2606–2621 (2007).Article 
CAS 

Google Scholar 
van Koningsbruggen, P. J., Maeda, Y. & Oshio, H. Iron(III) Spin Crossover Compounds. In Spin Crossover in Transition Metal Compounds I, edited by P. Gütlich & H. A. Goodwin (Springer, Berlin, 2004), pp. 259–324.Gütlich, P., Bill, E. & Trautwein, A. Mössbauer spectroscopy and transition metal chemistry. Fundamentals and application (Springer, Berlin, 2011).Kulmaczewski, R. et al. Remarkable scan rate dependence for a highly constrained dinuclear iron(II) spin crossover complex with a wide thermal hysteresis loop. J. Am. Chem. Soc. 136, 878–881 (2014).Article 
CAS 
PubMed 

Google Scholar 
Schenker, S., Hauser, A. & Dyson, R. M. Intersystem crossing dynamics in the iron(III) spin-crossover compounds [Fe(acpa)2]PF6 and [Fe(Sal2tr)]PF6. Inorg. Chem. 35, 4676–4682 (1996).Article 
CAS 

Google Scholar 
Buhks, E., Navon, G., Bixon, M. & Jortner, J. Spin conversion processes in solutions. J. Am. Chem. Soc. 102, 2918–2923 (1980).Article 
CAS 

Google Scholar 
Hauser, A., Jeftić, J., Romstedt, H., Hinek, R. & Spiering, H. Cooperative phenomena and light-induced bistability in iron(II) spin-crossover compounds. Coord. Chem. Rev. 190-192, 471–491 (1999).Article 
CAS 

Google Scholar 
Hauser, A. Cooperative effects on the HS→LS relaxation in the [Fe(ptz)6](BF4)2 spin-crossover system. Chem. Phys. Lett. 192, 65–70 (1992).Article 
ADS 
CAS 

Google Scholar 
Delgado, T. et al. Very long-lived photogenerated high-spin phase of a multistable spin-crossover molecular material. J. Am. Chem. Soc. 140, 12870–12876 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhao, Q., Xue, J.-P., Liu, Z.-K., Yao, Z.-S. & Tao, J. Spin-crossover iron(II) long-chain complex with slow spin equilibrium at low temperatures. Dalton Trans. 50, 11106–11112 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sunatsuki, Y. et al. An unprecedented homochiral mixed-valence spin-crossover compound. Angew. Chem. Int. Ed. 42, 1614–1618 (2003).Article 
CAS 

Google Scholar 
Timken, M. D., Abdel-Mawgoud, A. M. & Hendrickson, D. N. Dynamics of spin-state interconversion and cooperativity for ferric spin-crossover complexes in the solid state. 6. Magnetic and spectroscopic characterizations of [Fe(3-OEt-SalAPA)2]X (X = ClO4-, or BPh4-). Inorg. Chem. 25, 160–164 (1986).Klug, C. M. et al. Anion dependence in the spin-crossover properties of a Fe(II) podand complex. Dalton Trans. 41, 12577–12585 (2012).Article 
CAS 
PubMed 

Google Scholar 
Wu, S.-G. et al. Multiresponsive spin crossover driven by rotation of tetraphenylborate anion in an iron(III) complex. CCS Chem. 3, 453–459 (2021).Article 
ADS 
CAS 

Google Scholar 
Maeda, Y., Tsutsumi, N. & Takashima, Y. Examples of fast and slow electronic relaxation between 6A and 2T. Inorg. Chem. 23, 2440–2447 (1984).Article 
CAS 

Google Scholar 
Létard, J.-F. et al. Photomagnetism of a sym-cis-dithiocyanato iron(II) complex with a tetradentate N,N’-bis(2-pyridylmethyl)1,2-ethanediamine ligand. Chem. Eur. J. 18, 5924–5934 (2012).Article 
PubMed 

Google Scholar 
Kusz, J., Zubko, M., Fitch, A. & Gütlich, P. Isostructural phase transition in the spin crossover compound [Fe(dpp)2(NCS)2] · py. Z. Kristallogr. 226, 576–584 (2011).Article 
CAS 

Google Scholar 
Nicolazzi, W. & Bousseksou, A. Thermodynamical aspects of the spin crossover phenomenon. C. R. Chim. 21, 1060–1074 (2018).Article 
CAS 

Google Scholar 
Borys, A. M. An Illustrated Guide to Schlenk Line Techniques. Organometallics 42, 182–196 (2023).Article 
CAS 

Google Scholar 
Regel, E. C-Acylierung von 5 gliedrigen N-Heterocyclen, II. Acylierung von 1-Acylimidazolen, Thiazolen und Oxazolen sowie Darstellung N-unsubstituierter C-Acylazole. Liebigs Ann. Chem. 1977, 159–168 (1977).Article 

Google Scholar 
Bastiaansen, L. A. M., Van Lier, P. M. & Godefroi, E. F. Imidazole-2-carboxaldehyde. Org. Synth. 60, 72 (1981).Article 
CAS 

Google Scholar 
Bastiaansen, L. A. M. & Godefroi, E. F. 2-Aminomethylimidazole and imidazole-2-carboxaldehyde: two facile syntheses. J. Org. Chem. 43, 1603–1604 (1978).Article 
CAS 

Google Scholar 
Crombie, L., Games, D. E. & James, A. W. G. Polyketo-enols and chelates. Chemistry of the formation of xanthophanic enol and its glutaconate and pyran intermediates. J. Chem. Soc., Perkin Trans. 1, 464; https://doi.org/10.1039/P19790000464 (1979).Claisen, L. Untersuchungen über die Oxymethylenverbindungen. (Zweite Abhandlung.). Liebigs Ann. Chem. 297, 1–98 (1897).Article 
CAS 

Google Scholar 
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 48, 3–10 (2015).Article 
ADS 
CAS 

Google Scholar 
Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015).Article 

Google Scholar 
Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 64, 112–122 (2008).Article 
CAS 

Google Scholar 
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C. 71, 3–8 (2015).Article 

Google Scholar 
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).Article 
ADS 
CAS 

Google Scholar 
Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012).Article 
ADS 
CAS 

Google Scholar 
Macrae, C. F. et al. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 53, 226–235 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).Article 
ADS 
CAS 

Google Scholar 
Ketkaew, R. et al. OctaDist: a tool for calculating distortion parameters in spin crossover and coordination complexes. Dalton Trans. (Camb., Engl.: 2003) 50, 1086–1096 (2021).Article 
CAS 

Google Scholar 
Spackman, M. A. & Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009).Article 
CAS 

Google Scholar 
Spackman, P. R. et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 54, 1006–1011 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hatscher, S., Schilder, H., Lueken, H. & Urland, W. Practical guide to measurement and interpretation of magnetic properties (IUPAC Technical Report). Pure Appl. Chem. 77, 497–511 (2005).Article 
CAS 

Google Scholar 
Bain, G. A. & Berry, J. F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 85, 532 (2008).Article 
CAS 

Google Scholar 
Quantum Design. MPMS MultiVu (San Diego USA, 2004).Lagarec, K. & Rancourt, D. G. Mössbauer spectral analysis software for Windows (Department of Physics, University of Ottawa, Canada, 1998).Wolfram Research Inc. Mathematica (Champaign, USA, 2011).Fulmer, G. R. et al. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 29, 2176–2179 (2010).Article 
CAS 

Google Scholar 
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles