Trace element detection in anhydrous minerals by micro-scale quantitative nuclear magnetic resonance spectroscopy

Yoshino, T. & Jaseem, V. Fluorine solubility in bridgmanite: A potential fluorine reservoir in the Earth’s mantle. Earth Planet. Sci. Lett. 504, 106–114 (2018).Article 
ADS 
CAS 

Google Scholar 
Ohtani, E. Hydrous minerals and the storage of water in the deep mantle. Chem. Geol. 418, 6–15 (2015).Article 
ADS 
CAS 

Google Scholar 
Demouchy, S. & Bolfan-Casanova, N. Distribution and transport of hydrogen in the lithospheric mantle: A review. Lithos 240–243, 402–425 (2016).Article 
ADS 
CAS 

Google Scholar 
Sarafian, A. R. et al. The water and fluorine content of 4 Vesta. Geochim. Cosmochim. Acta 266, 568–581 (2019).Article 
ADS 
CAS 

Google Scholar 
Beyer, C., Klemme, S., Wiedenbeck, M., Stracke, A. & Vollmer, C. Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet. Sci. Lett. 337–338, 1–9 (2012).Article 
ADS 
CAS 

Google Scholar 
Maciá, E. The role of phosphorus in chemical evolution. Chem. Soc. Rev. 34, 691 (2005).Article 
PubMed 

Google Scholar 
Pasek, M. A. Phosphorus volatility in the early Solar nebula. Icarus 317, 59–65 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kumamoto, K. M., Warren, J. M. & Hauri, E. H. New SIMS reference materials for measuring water in upper mantle minerals. Am. Mineral. 102, 537–547 (2017).Article 
ADS 

Google Scholar 
Walton, C. R. et al. Phosphorus mineral evolution and prebiotic chemistry: From minerals to microbes. Earth Sci. Rev. 221, 1–46 (2021).Article 

Google Scholar 
Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Peslier, A. H., Woodland, A. B., Bell, D. R. & Lazarov, M. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78–81 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xia, Q. K. et al. Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications. Natl. Sci. Rev. 6, 125–144 (2019).Article 
CAS 
PubMed 

Google Scholar 
Keppler, H., Smyth, J.R. and Rosso, J.J. Water in Nominally Anhydrous Minerals. (De Gruyter, 62, 2006). https://doi.org/10.1515/9781501509476Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S. I. Water in the Earth’s Interior: Distribution and Origin. Space Sci. Rev. 212, 743–810 (2017).Article 
ADS 
CAS 

Google Scholar 
Fei, H. et al. A nearly water-saturated mantle transition zone inferred from mineral viscosity. Sci. Adv. 3, 1–8 (2017).Article 

Google Scholar 
Mao, Z. et al. Sound velocities of hydrous ringwoodite to 16GPa and 673K. Earth Planet. Sci. Lett. 331–332, 112–119 (2012).Article 
ADS 
CAS 

Google Scholar 
Huang, X., Xu, Y. & Karato, S. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Keppler, H. Thermodynamics of water solubility and partitioning. Rev. Mineral. Geochem. 62, 193–230 (2006).Article 
CAS 

Google Scholar 
Grüninger, H. et al. Hidden oceans? unraveling the structure of hydrous defects in the earth’s deep interior. J. Am. Chem. Soc. 139, 10499–10505 (2017).Article 
PubMed 

Google Scholar 
Kaminsky, F. V. Water in the earth’s lower mantle. Geochem. Int. 56, 1117–1134 (2018).Article 

Google Scholar 
Johnson, E. A. & Rossman, G. R. The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am. Mineral. 88, 901–911 (2003).Article 
ADS 
CAS 

Google Scholar 
Tu, C., Meng, Z. Y., Gao, X. Y. & Zhang, L. Quantification of water content and speciation in synthetic rhyolitic glasses: optimising the analytical method of confocal raman spectrometry. Geostand. Geoanal. Res. 47, 549–567 (2023).Article 
CAS 

Google Scholar 
Newcombe, M. E. et al. Degassing of early-formed planetesimals restricted water delivery to Earth. Nature 615, 854–857 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Broadley, M. W., Bekaert, D. V., Piani, L., Füri, E. & Marty, B. Origin of life-forming volatile elements in the inner Solar System. Nature 611, 245–255 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Peterson, L. D. et al. The H2O content of the ureilite parent body. Geochim. Cosmochim. Acta 340, 141–157 (2023).Article 
ADS 
CAS 

Google Scholar 
Peterson, L. D. et al. The H content of aubrites: An evaluation of bulk versus in situ methods for quantifying water in meteorites. Earth Planet. Sci. Lett. 620, 118341 (2023).Article 
CAS 

Google Scholar 
Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: Isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002).Article 
ADS 
CAS 

Google Scholar 
Hu, S. et al. Measurements of water content and D/H ratio in apatite and silicate glasses using a NanoSIMS 50L. J. Anal. At. Spectrom. 30, 967–978 (2015).Article 
CAS 

Google Scholar 
Koga, K., Hauri, E., Hirschmann, M. & Bell, D. Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals. Geochemistry, Geophys. Geosystems 4, 1–20 (2003).Article 

Google Scholar 
Moine, B. N. et al. Molecular hydrogen in minerals as a clue to interpret δD variations in the mantle. Nat. Commun. 11, 3604 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mosenfelder, J. L., Rossman, G. R. & Johnson, E. A. Hydrous species in feldspars: A reassessment based on FTIR and SIMS. Am. Mineral. 100, 1209–1221 (2015).Article 
ADS 

Google Scholar 
Hui, H. et al. A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 473, 14–23 (2017).Article 
ADS 
CAS 

Google Scholar 
Aubaud, C. et al. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am. Mineral. 92, 811–828 (2007).Article 
ADS 
CAS 

Google Scholar 
Katayama, I., Nakashima, S. & Yurimoto, H. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86, 245–259 (2006).Article 
ADS 
CAS 

Google Scholar 
Seifrid, M., Reddy, G. N. M., Chmelka, B. F. & Bazan, G. C. Insight into the structures and dynamics of organic semiconductors through solid-state NMR spectroscopy. Nat. Rev. Mater. 5, 910–930 (2020).Article 
ADS 
CAS 

Google Scholar 
Crook, A. A. & Powers, R. Quantitative NMR-based biomedical metabolomics: Current status and applications. Molecules 25, 21 (2020).Article 

Google Scholar 
Khalil, A. & Kashif, M. Nuclear magnetic resonance spectroscopy for quantitative analysis: A review for its application in the chemical, pharmaceutical and medicinal domains. Crit. Rev. Anal. Chem. 53, 997–1011 (2021).Article 
PubMed 

Google Scholar 
Hoult, D. I. & Richards, R. E. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24, 71–85 (1976).ADS 

Google Scholar 
McCubbin, F. M. et al. Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. Am. Mineral. 100, 1668–1707 (2015).Article 
ADS 

Google Scholar 
Li, M. et al. Quantifying pharmaceutical formulations from proton detected solid-state NMR under ultrafast magic angle spinning. J. Pharm. Sci. 109, 3045–3053 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Peck, T. L., Magin, R. L. & Lauterbur, P. C. Design and analysis of microcoils for NMR microscopy. J. Magn. Reson. 108, 114–124 (1995).Article 
CAS 

Google Scholar 
Olson, D. L., Peck, T. L., Webb, A. G., Magin, R. L. & Sweedler, J. V. High-resolution microcoil 1 H-NMR for mass-limited, nanoliter-volume samples. Science 270, 1967–1970 (1995).Article 
ADS 
CAS 

Google Scholar 
Schlotterbeck, G. et al. High-resolution capillary tube NMR. A miniaturized 5-μL high-sensitivity TXi probe for mass-limited samples, off-line LC NMR, and HT NMR. Anal. Chem. 74, 4464–4471 (2002).Article 
CAS 
PubMed 

Google Scholar 
Schroeder, F. C. & Gronquist, M. Extending the scope of NMR spectroscopy with microcoil probes. Angew. Chem. Int. Ed. 45, 7122–7131 (2006).Article 
CAS 

Google Scholar 
Meier, T. At its extremes: NMR at giga-pascal pressures. Annu. Rep. NMR Spectro. 93, 1–74 (2018).Article 
ADS 
CAS 

Google Scholar 
Meier, T., Khandarkhaeva, S., Jacobs, J., Dubrovinskaia, N. & Dubrovinsky, L. Improving resolution of solid state NMR in dense molecular hydrogen. Appl. Phys. Lett. 115, 13 (2019).Article 

Google Scholar 
Meier, T. et al. Pressure-induced hydrogen-hydrogen interaction in metallic FeH revealed by NMR. Phys. Revi. X 9, 31008, (2019).CAS 

Google Scholar 
Jouda, M. et al. A comparison of Lenz lenses and LC resonators for NMR signal enhancement. Concept. Magn. Reson. B 47B, 1–10 (2017).Article 

Google Scholar 
Meier, T. Journey to the centre of the Earth: Jules Vernes’ dream in the laboratory from an NMR perspective. Prog. Nucl. Magn. Reson. Spectrosc. 106-107, 26–36 (2018).Article 
CAS 
PubMed 

Google Scholar 
Meier, T. et al. Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions. Nat. Commun. 13, 1–8 (2022).Article 
ADS 

Google Scholar 
Meier, T., Laniel, D. & Trybel, F. Direct hydrogen quantification in high-pressure metal hydrides. Matter Radiat. Extremes 8, 1 (2023).Article 

Google Scholar 
Meier, T. et al. Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance. Sci. Adv. 3, 1–10 (2017).Article 

Google Scholar 
Meier, T. et al. NMR at pressures up to 90 GPa. J. Magn. Reson. 292, 44–47 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Meier, T., Petitgirard, S., Khandarkhaeva, S. & Dubrovinsky, L. Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice. Nat. Commun. 9, 1–7 (2018).Article 
ADS 
CAS 

Google Scholar 
Hui, H., Peslier, A. H., Zhang, Y. & Neal, C. R. Water in lunar anorthosites and evidence for a wet early Moon. Nat. Geosci. 6, 177–180 (2013).Article 
ADS 
CAS 

Google Scholar 
Sarafian, A. R. et al. Early accretion of water and volatile elements to the inner solar system: Evidence from angrites. Philos. Trans. Royal Soc. A 375, 2094 (2017).
Google Scholar 
Mills, R. D., Simon, J. I., Alexander, C. M. O. D., Wang, J. & Hauri, E. H. Water in alkali feldspar: The effect of rhyolite generation on the lunar hydrogen budget. Geochem. Perspect. Lett. 3, 115–123 (2017).Article 

Google Scholar 
Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wu, S. et al. Three natural andesitic to rhyolitic glasses (OJY-1, OH-1, OA-1) as reference materials for in situ microanalysis. Geostandard. Geoanal. Res. 46, 673–700 (2022).Article 
CAS 

Google Scholar 
Li, J. et al. Silica-water superstructure and one-dimensional superionic conduit in Earth’s mantle. Sci. Adv. 9, eadh3784 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gattacceca, J. et al. The meteoritical bulletin, no. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022).Article 
ADS 
CAS 

Google Scholar 
Gattacceca, J. et al. The meteoritical bulletin, no. 111. Meteorit. Planet. Sci. 58, 901–904 (2023).Article 
ADS 
CAS 

Google Scholar 
Yang, Y. N. et al. NanoSIMS analysis of water content in bridgmanite at the micron scale: An experimental approach to probe water in Earth’s deep mantle. Front. Chem. 11, 1–12 (2023).
Google Scholar 
Shimizu, K. et al. H2O, CO2, F, S, Cl, and P2O5 analyses of silicate glasses using SIMS: Report of volatile standard glasses. Geochem. J. 51, 299–313 (2017).Article 
ADS 
CAS 

Google Scholar 
Zhang, W., Xia, X., Zhang, Y., Peng, T. & Yang, Q. A novel sample preparation method for ultra-high vacuum (UHV) secondary ion mass spectrometry (SIMS) analysis. J. Anal. At. Spectrom. 33, 1559–1563 (2018).Article 
CAS 

Google Scholar 
Zeng, X. et al. Experimental investigation of OH/H2O in H+-irradiated plagioclase: Implications for the thermal stability of water on the lunar surface. Earth Planet. Sci. Lett. 560, 116806 (2021).Article 
CAS 

Google Scholar 
Zhou, C. et al. Chang’E-5 samples reveal high water content in lunar minerals. Nat. Commun. 13, 5336 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Johnson, E. A. & Rossman, G. R. A survey of hydrous species and concentrations in igneous feldspars. Am. Mineral. 89, 586–600 (2004).Article 
ADS 
CAS 

Google Scholar 

Hot Topics

Related Articles