Extreme phenotype sampling and next generation sequencing to identify genetic variants associated with tacrolimus in African American kidney transplant recipients

Puttarajappa CM, Schinstock CA, Wu CM, Leca N, Kumar V, Vasudev BS, et al. KDOQI US Commentary on the 2020 KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Am J Kidney Dis. 2021;77:833–56. http://www.ncbi.nlm.nih.gov/pubmed/33745779.Article 
PubMed 

Google Scholar 
Jouve T, Noble J, Rostaing L, Malvezzi P. Tailoring tacrolimus therapy in kidney transplantation. Expert Rev Clin Pharmacol. 2018;11:581–8. http://www.ncbi.nlm.nih.gov/pubmed/29779413.Article 
CAS 
PubMed 

Google Scholar 
United States Renal Data System. 2023 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. https://adr.usrds.org/2023.Taber DJ, Egede LE, Baliga PK. Outcome disparities between African Americans and Caucasians in contemporary kidney transplant recipients. Am J Surg. 2017;213:666–72. http://www.ncbi.nlm.nih.gov/pubmed/27887677.Article 
PubMed 

Google Scholar 
Fan PY, Ashby VB, Fuller DS, Boulware LE, Kao A, Norman SP, et al. Access and outcomes among minority transplant patients, 1999-2008, with a focus on determinants of kidney graft survival. Am J Transplant. 2010;10:1090–107. http://www.ncbi.nlm.nih.gov/pubmed/20420655.Article 
PubMed 
PubMed Central 

Google Scholar 
Lentine KL, Smith JM, Miller JM, Bradbrook K, Larkin L, Weiss S, et al. OPTN/SRTR 2021 Annual Data Report: Kidney. Am J Transplant. 2023;23:S21–120. http://www.ncbi.nlm.nih.gov/pubmed/37132350.Article 
PubMed 
PubMed Central 

Google Scholar 
Kamdem LK, Streit F, Zanger UM, Brockmöller J, Oellerich M, Armstrong VW, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem. 2005;51:1374–81. http://www.ncbi.nlm.nih.gov/pubmed/15951320.Article 
CAS 
PubMed 

Google Scholar 
Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9:S1–155. http://www.ncbi.nlm.nih.gov/pubmed/19845597.Article 

Google Scholar 
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, et al. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol. 2020;16:769–82. http://www.ncbi.nlm.nih.gov/pubmed/32721175.Article 
CAS 
PubMed 

Google Scholar 
Davis S, Gralla J, Klem P, Tong S, Wedermyer G, Freed B, et al. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant. 2018;18:907–15. http://www.ncbi.nlm.nih.gov/pubmed/28925597.Article 
CAS 
PubMed 

Google Scholar 
Lee B, Petzel R, Campara M. Appropriate timing of tacrolimus concentration measurements in the emergency department. Am J Heal Pharm. 2016;73:1297–8.Article 

Google Scholar 
Oetting WS, Schladt DP, Guan W, Miller MB, Remmel RP, Dorr C, et al. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles. Am J Transplant. 2016;16:574–82. http://www.ncbi.nlm.nih.gov/pubmed/26485092.Article 
CAS 
PubMed 

Google Scholar 
Mo H, Kim SY, Min S, Han A, Ahn S, Min SK, et al. Association of Intrapatient Variability of Tacrolimus Concentration with Early Deterioration of Chronic Histologic Lesions in Kidney Transplantation. Transplant Direct. 2019;5:e455.Ro H, Min SI, Yang J, Moon KC, Kim YS, Kim SJ, et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Ther Drug Monit. 2012;34:680–5. http://www.ncbi.nlm.nih.gov/pubmed/23149441.Article 
CAS 
PubMed 

Google Scholar 
Mohamed ME, Schladt DP, Guan W, Wu B, van Setten J, Keating BJ, et al. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. Am J Transplant. 2019;19:2795–804.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Egeland EJ, Robertsen I, Hermann M, Midtvedt K, Størset E, Gustavsen MT, et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase after Renal Transplantation. Transplantation. 2017;101:e273–9.Article 
CAS 
PubMed 

Google Scholar 
Sanghavi K, Brundage RC, Miller MB, Schladt DP, Israni AK, Guan W, et al. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharmacogenomics J. 2017;17:61–8.Article 
CAS 
PubMed 

Google Scholar 
Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA. Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol. 2011;72:948–57.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dorr CR, Wu B, Remmel RP, Muthusamy A, Schladt DP, Abrahante JE, et al. Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. Pharmacogenomics J. 2019;19:375–89.Article 
CAS 
PubMed 

Google Scholar 
Collins JM, Nworu AC, Mohammad SJ, Li L, Li C, Li C, et al. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clin Transl Sci. 2022;15:2720–31.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Mannon RB, et al. Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients. Pharmacogenomics J. 2018;18:501–5. http://www.ncbi.nlm.nih.gov/pubmed/29160300.Article 
CAS 
PubMed 

Google Scholar 
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:1–14. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4.Lee S, Fuchsberger C, Kim S, Scott L. An efficient resampling method for calibrating single and gene-based rare variant association analysis in case-control studies. Biostatistics. 2016;17:1–15. http://www.ncbi.nlm.nih.gov/pubmed/26363037.Article 
CAS 
PubMed 

Google Scholar 
Barnett IJ, Lee S, Lin X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet Epidemiol. 2013;37:142–51. http://www.ncbi.nlm.nih.gov/pubmed/23184518.Article 
PubMed 

Google Scholar 
Li D, Lewinger JP, Gauderman WJ, Murcray CE, Conti D. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet Epidemiol. 2011;35:790–9. http://www.ncbi.nlm.nih.gov/pubmed/21922541.Article 
PubMed 
PubMed Central 

Google Scholar 
Luo Z, Li X, Zhu M, Tang J, Li Z, Zhou X, et al. Identification of novel variants associated with warfarin stable dosage by use of a two-stage extreme phenotype strategy. J Thromb Haemost. 2017;15:28–37. http://www.ncbi.nlm.nih.gov/pubmed/27740732.Article 
CAS 
PubMed 

Google Scholar 
Ma S, Luo Z, Zhou X, Zhou H, Chen L, Zhang W. Effect of NPC1L1 polymorphism on warfarin stable dose in Chinese patients under heart valve replacement surgery. Clin Exp Pharmacol Physiol. 2022;49:212–8. http://www.ncbi.nlm.nih.gov/pubmed/34606635.Article 
CAS 
PubMed 

Google Scholar 
Amanat S, Requena T, Lopez-Escamez JA. A Systematic Review of Extreme Phenotype Strategies to Search for Rare Variants in Genetic Studies of Complex Disorders. Genes. 2020;11. http://www.ncbi.nlm.nih.gov/pubmed/32854191.rs4986907 RefSNP Report – dbSNP – NCBI. 2024. https://www.ncbi.nlm.nih.gov/snp/rs4986907#frequency_tab.Cai Y, Lin Q, Jin Z, Xia F, Ye Y, Xia Y, et al. Evaluation of Recombinant CYP3A4 Variants on the Metabolism of Oxycodone in Vitro. Chem Res Toxicol. 2021;34:103–9.Article 
CAS 
PubMed 

Google Scholar 
Kumondai M, Gutiérrez Rico EM, Hishinuma E, Ueda A, Saito S, Saigusa D, et al. Functional Characterization of 40 CYP3A4 Variants by Assessing Midazolam 1’-Hydroxylation and Testosterone 6β-Hydroxylation. Drug Metab Dispos. 2021;49:212–20. http://www.ncbi.nlm.nih.gov/pubmed/33384383.Article 
CAS 
PubMed 

Google Scholar 
Dorr CR, Remmel RP, Muthusamy A, Fisher J, Moriarity BS, Yasuda K, et al. CRISPR/Cas9 genetic modification of CYP3A5 *3 in HuH-7 human hepatocyte cell line leads to cell lines with increased midazolam and tacrolimus metabolism. Drug Metab Dispos. 2017;45:957–65. http://dmd.aspetjournals.org/lookup/doi/10.1124/dmd.117.076307.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marienne J, Laville SM, Caillard P, Batteux B, Gras-Champel V, Masmoudi K, et al. Evaluation of Changes Over Time in the Drug Burden and Medication Regimen Complexity in ESRD Patients Before and After Renal Transplantation. Kidney Int Rep. 2021;6:128–37.Article 
PubMed 

Google Scholar 
Low JK, Crawford K, Manias E, Williams A. Quantifying the medication burden of kidney transplant recipients in the first year post-transplantation. Int J Clin Pharm. 2018;40:1242–9.Article 
PubMed 

Google Scholar 
Giza P, Ficek R, Dwulit T, Chudek J, Woźniak I, Więcek A, et al. Number of regularly prescribed drugs and intrapatient tacrolimus trough levels variability in stable kidney transplant recipients. J Clin Med. 2020;9:1–10.Article 

Google Scholar 
Malki MA, Pearson ER. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenomics J. 2020;20:355–66.Article 
CAS 
PubMed 

Google Scholar 
Bahar MA, Setiawan D, Hak E, Wilffert B. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: A systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics. 2017;18:701–39.Article 
CAS 
PubMed 

Google Scholar 
Chen Y, Jin JY, Mukadam S, Malhi V, Kenny JR. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies. Biopharm Drug Dispos. 2012;33:85–98. http://www.ncbi.nlm.nih.gov/pubmed/22228214.Article 
PubMed 

Google Scholar 
Houston JB, Galetin A. Methods for predicting in vivo pharmacokinetics using data from in vitro assays. Curr Drug Metab. 2008;9:940–51. http://www.ncbi.nlm.nih.gov/pubmed/18991591.Article 
CAS 
PubMed 

Google Scholar 
Isoherranen N, Foti RS. Chapter 9 – In vitro characterization and in vitro to in vivo predictions of drug-drug interactions. In: Ma S, Chowdhury Metabolites, Drug Metabolizing Enzymes, and Transporters, 2nd ed. Amsterdam: Elsevier; 2020. p. 273–309. https://www.sciencedirect.com/science/article/pii/B9780128200186000090.Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570:462–7. http://www.ncbi.nlm.nih.gov/pubmed/31158845.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo Y, Crnkovic CM, Won KJ, Yang X, Lee JR, Orjala J, et al. Commensal Gut Bacteria Convert the Immunosuppressant Tacrolimus to Less Potent Metabolites. Drug Metab Dispos. 2019;47:194–202. http://www.ncbi.nlm.nih.gov/pubmed/30598508.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mohamed ME, Saqr A, Staley C, Onyeaghala G, Teigen L, Dorr CR, et al. Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation. Transplantation. 2024. http://www.ncbi.nlm.nih.gov/pubmed/38361239.Ko H, Kim HK, Chung C, Han A, Min SK, Ha J, et al. Association between medication adherence and intrapatient variability in tacrolimus concentration among stable kidney transplant recipients. Sci Rep. 2021;11:5397.Leino AD, Abuls KM, Rodgers JKL, Kuntz KK. Evaluation of the Relationship between Medication Adherence and Tacrolimus Coefficient of Variation. Prog Transplant. 2022;32:184–9.Article 

Google Scholar 

Hot Topics

Related Articles