Metallic coatings in offshore wind sector—a mini review

Wiatros-Motyka, M. et al. Ember´s Global Electricity Review 2023. https://ember-climate.org/insights/research/global-electricity-review-2023/.Williams, R. & Zhao, F. Global offshore wind report 2023. www.gwec.net.Igwemezie, V., Mehmanparast, A. & Kolios, A. Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures—a review. Renew. Sustain. Energy Rev. 101, 181–196 (2019).Article 

Google Scholar 
ISO 12944-2:2017 Paints and varnishes—Corrosion protection of steel structures by protective paint systems—Part 2: Classification of environments (The International Organization for Standardization, 2017).ISO 12944-9:2018 Paints and varnishes – Corrosion protection of steel structures by protective paint systems—Part 9: Protective paint systems and laboratory performance test methods for offshore and related structures (The International Organization for Standardization, 2018).VGBE-S-021-01-2023-05 Corrosion Protection for Offshore Wind Structures Part 1: General. (vgbe/BAW-Standard, 2023).NORSOK M‐501 Surface Preparation and Protective Coatings, Rev. 7. (Norwegian Technology Standards Institution, 2022).ISO 12944-5:2019 Paints and varnishes – Corrosion protection of steel structures by protective paint systems — Part 5: Protective paint systems. (The International Organization for Standardization, 2019).VGBE-S-021-02-2023-05 Corrosion Protection for Offshore Wind Structures Part 2: Requirements for Corrosion Protection Systems. (vgbe/BAW-Standard, 2023).VGBE-S-021-03-2023-05 Corrosion Protection for Offshore Wind Structures Part 3: Application of Coating Systems. (vgbe/BAW-Standard, 2023).Hussain, A. K., Seetharamaiah, N., Pichumani, M. & Chakra, C. S. Research progress in organic zinc rich primer coatings for cathodic protection of metals—a comprehensive review. Prog. Org. Coat. 153, 106040 (2021).Article 
CAS 

Google Scholar 
Qi, C., Weinell, C. E., Dam-Johansen, K. & Wu, H. Assessment of anticorrosion performance of zinc-rich epoxy coatings added with zinc fibers for corrosion protection of steel. ACS Omega 8, 1912–1922 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jalili, M., Rostami, M. & Ramezanzadeh, B. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle. Appl. Surf. Sci. 328, 95–108 (2015).Article 
CAS 

Google Scholar 
Kalendová, A., Veselý, D., Kohl, M. & Stejskal, J. Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments. Prog. Org. Coat. 78, 1–20 (2015).Article 

Google Scholar 
Bai, Y. et al. Fabrication of a conductive additive for the anticorrosion enhancement of zinc-rich epoxy coatings. Coatings 12, 1406 (2022).Article 
CAS 

Google Scholar 
Xie, D. M., Huang, K., Feng, X. & Wang, Y. G. Improving the performance of zinc-rich coatings using conductive pigments and silane. Corros. Eng. Sci. Technol. 55, 539–549 (2020).Article 
CAS 

Google Scholar 
Qi, C., Dam-Johansen, K., Weinell, C. E., Bi, H. & Wu, H. Enhanced anticorrosion performance of zinc rich epoxy coatings modified with stainless steel flakes. Prog. Org. Coat. 163, 106616 (2022).Article 
CAS 

Google Scholar 
Bai, W., Ma, Y., Meng, M. & Li, Y. The influence of graphene on the cathodic protection performance of zinc-rich epoxy coatings. Prog. Org. Coat. 161, 106456 (2021).Article 
CAS 

Google Scholar 
Park, S. M. & Shon, M. Y. Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating. J. Ind. Eng. Chem. 21, 1258–1264 (2015).Article 
CAS 

Google Scholar 
ISO 2063-1:2019 Thermal spraying—Zinc, aluminium and their alloys — Part 1: Design considerations and quality requirements for corrosion protection systems. (The International Organization for Standardization, 2019).Hernández-Betancur, J. D., Hernández, H. F. & Ocampo-Carmona, L. M. A holistic framework for assessing hot-dip galvanizing process sustainability. J. Clean. Prod. 206, 755–766 (2019).Article 

Google Scholar 
ISO 9224:2012 Corrosion of metals and alloys—Corrosivity of atmospheres—Guiding values for the corrosivity categories (The International Organization for Standardization, 2012).Marrón, A. Y. Benefits of using zinc-rich primers in offshore environments. Paper presented at the AMPP Annual Conference + Expo, Denver, Colorado, USA, March 2023. Paper Number: AMPP-2023-18932 Published: March 19 2023.Knudsen, O. Ø., Skilbred, A. W. B., Løken, A., Daneshian, B. & Höche, D. Correlations between standard accelerated tests for protective organic coatings and field performance. Mater. Today Commun. 31, 103729 (2022).Article 
CAS 

Google Scholar 
Knudsen, O. Ø., Steinsmo, U. & Bjordal, M. Zinc-rich primers—Test performance and electrochemical properties. Prog. Org. Coat. 54, 224–229 (2005).Article 
CAS 

Google Scholar 
Marinova, N., Urbegain, A., Benguria, P., Travé, A. & Caracena, R. Evaluation of anticorrosion coatings for offshore wind turbine monopiles for an optimized and time‐efficient coating application. Coatings 12, 384 (2022).Article 
CAS 

Google Scholar 
Bland, J. Corrosion tests of flame-sprayed coated steel – 19 Year Report. American Welding Society (1974).Kuroda, S., Kawakita, J. & Takemoto, M. An 18-year exposure test of thermal-sprayed Zn, Al, and Zn-Al coatings in marine environment. Corrosion 62, 635–647 (2006).Article 
CAS 

Google Scholar 
Goodwin, F. E. A Review of the Zinc Thermal Spraying Process and its Protective Qualities for Steel Structures, with a Focus on Windmill Conditions. Conference: International Workshop, “Innovative Beschichtungen fuer Windkraftanlagen” in Berlin, Germany (2012).Brijder, R. et al. Review of corrosion monitoring and prognostics in offshore wind turbine structures: Current status and feasible approaches. Front. Energy Res. 10, 991343 (2022).Article 

Google Scholar 
Veritas, D. N. Recommended practice DNVGL-RP-0416 Corrosion protection for wind turbines. (2021).ISO 24656:2022 Cathodic protection of offshore wind structures (The International Organization for Standardization, 2022).Fischer, K. P., Thomason, W. H., Rosbrook, T. & Murali, J. Performance history of thermal-sprayed aluminum coatings in offshore service. Mater. Perform. 34, 27–35 (1995).CAS 

Google Scholar 
Syrek-Gerstenkorn, B., Paul, S. & Davenport, A. J. Sacrificial thermally sprayed aluminium coatings for marine environments: a review. Coatings 10, 267 (2020).Article 
CAS 

Google Scholar 
Syrek-Gerstenkorn, B., Paul, S. & Davenport, A. J. Use of thermally sprayed aluminium (TSA) coatings to protect offshore structures in submerged and splash zones. Surf. Coat. Tech. 374, 124–133 (2019).Article 
CAS 

Google Scholar 
Ce, N. & Paul, S. The effect of temperature and local pH on calcareous deposit formation in damaged thermal spray aluminum (TSA) coatings and its implication on corrosion mitigation of offshore steel structures. Coatings 7, 52 (2017).Article 

Google Scholar 
Paul, S. Behavior of damaged thermally sprayed aluminum (TSA) in aerated and dearated seawater Paper No. 12766. in Corrosion 2019 (NACE International, 2019).Grinon-Echaniz, R. et al. Prediction of thermal spray coatings performance in marine environments by combination of laboratory and field tests. Coatings 11, 320 (2021).Article 
CAS 

Google Scholar 
Grinon-Echaniz, R., Paul, S. & Thornton, R. Effect of seawater constituents on the performance of thermal spray aluminum in marine environments. Mater. Corros. 70, 996–1004 (2019).Article 

Google Scholar 
Grinon-Echaniz, R. et al. Study of cathodic reactions in defects of thermal spray aluminium coatings on steel in artificial seawater. Corros. Sci. 187, 109514 (2021).Article 
CAS 

Google Scholar 
Paul, S. Effect of damage on the corrosion performance of thermal spray aluminium (TSA) coating in synthetic seawater. Appl. Sci. 13, 1109 (2023).Article 
CAS 

Google Scholar 
Castro-Vargas, A. & Paul, S. In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater. Electrochim. Acta 464, 142847 (2023).Article 
CAS 

Google Scholar 
Wolfson, S. L. Corrosion control of subsea piping systems using thermal sprayed aluminum coatings. Mater. Perform. 35, 29–37 (1996).
Google Scholar 
Knudsen, O. Ø., Van Bokhorst, J., Clapp, G. & Duncan, G. Technical note: corrosion of cathodically polarized thermally sprayed aluminum in subsea mud at high temperature. Corrosion 72, 560–568 (2016).CAS 

Google Scholar 
Ryen, A., Johnsen, R., Iannuzzi, M. & Artun, L. Cathodic protection by distributed sacrificial anodes – Performance at Elevated Temperature and in Mud. Paper presented at the CORROSION 2018, Phoenix, Arizona, USA, April 2018. Paper Number: NACE-2018-11106 Published: April 15 2018.Ren, Z., Verma, A. S., Li, Y., Teuwen, J. J. E. & Jiang, Z. Offshore wind turbine operations and maintenance: a state-of-the-art review. Renew. Sustain. Energy Rev. 144, 110886 (2021).Article 

Google Scholar 
Goodwin, F. E. Life Cycle Cost Reduction through New Thermal Sprayed Coatings Subtitle: Thermal Sprayed Coatings: A new generation of corrosion protection systems for Offshore Wind Energy Structures. Conference: Windforce 2013 in Bremerhaven, Germany (2013).Kirchgeorg, T. et al. Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment. Mar. Pollut. Bull. 136, 257–268 (2018).Article 
CAS 
PubMed 

Google Scholar 
Farr, H., Ruttenberg, B., Walter, R. K., Wang, Y.-H. & White, C. Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean Coast. Manag. 207, 105611 (2021).Article 

Google Scholar 
Ebeling, A. et al. Investigation of potential metal emissions from galvanic anodes in offshore wind farms into North Sea sediments. Mar. Pollut. Bull. 194, 115396 (2023).Article 
CAS 
PubMed 

Google Scholar 
Fiore, M. et al. Tackling marine microplastics pollution: an overview of existing solutions. Water Air Soil Pollut. 233, 276 (2022).Article 
CAS 

Google Scholar 
Turner, A. Paint particles in the marine environment: an overlooked component of microplastics. Water Res. X 12, 100110 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vermeirssen, E. L. M., Dietschweiler, C., Werner, I. & Burkhardt, M. Corrosion protection products as a source of bisphenol A and toxicity to the aquatic environment. Water Res. 123, 586–593 (2017).Article 
CAS 
PubMed 

Google Scholar 
ISO 12944-6:2018 Paints and varnishes—Corrosion protection of steel structures by protective paint systems—Part 6: Laboratory performance test methods. (The International Organization for Standardization, 2018).LeBozec, N. et al. Performance of marine and offshore paint systems: correlation of accelerated corrosion tests and field exposure on operating ships. Mater. Corros. 66, 215–225 (2015).Article 
CAS 

Google Scholar 
Skerry, B. S. & Simpson, C. H. Corrosion and weathering of paints for atmospheric corrosion control 8. Corrosion 49, 663–674 (1993).Article 
CAS 

Google Scholar 
Li, S., Bi, H., Weinell, C. E. & Dam-Johansen, K. A quantitative real-time evaluation of rust creep propagation in coating systems exposed to field testing and cyclic ageing test. Prog. Org. Coat. 184, 107866 (2023).Article 
CAS 

Google Scholar 
Pélissier, K., Le Bozec, N., Thierry, D. & Larché, N. Evaluation of the long-term performance of marine and offshore coatings system exposed on a traditional stationary site and an operating ship and its correlation to accelerated test. Coatings 12, 1758 (2022).Ehsanjoo, M., Mohammadi, S. & Chaibakhsh, N. Long-term corrosion resistance of zinc-rich paint using functionalised multi-layer graphene-tripolyphosphate: in situ creation of zinc phosphate as corrosion inhibitor. Corros. Eng. Sci. Technol. 54, 698–714 (2019).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles