Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption

Skibbens, R. V. et al. Cohesinopathies of a feather flock together. PLoS Genet 9, e1004036 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Banerji, R., Skibbens, R. V. & Iovine, M. K. How many roads lead to cohesinopathies? Dev. Dyn. 246, 881–888 (2017).Article 
CAS 
PubMed 

Google Scholar 
McNairn, A. J. & Gerton, J. L. Cohesinopathies: one ring, many obligations. Mutat. Res–Fund. Mol. M. 647, 103–111 (2008).Article 
CAS 

Google Scholar 
Piché, J., Van Vliet, P. P., Pucéat, M. & Andelfinger, G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 18, 2828–2848 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kantaputra, P. N. et al. Juberg-Hayward syndrome is a cohesinopathy, caused by mutation in ESCO2. Eur. J. Orthod. 43, 45–50 (2021).Article 
PubMed 

Google Scholar 
Liu, J. & Krantz, I. D. Cornelia de Lange syndrome, cohesin, and beyond. Clin. Genet. 76, 303–314 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vega, H. et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat. Genet. 37, 468–470 (2005).Article 
CAS 
PubMed 

Google Scholar 
Schüle, B., Oviedo, A., Johnston, K., Pai, S. & Francke, U. Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am. J. Hum. Genet. 77, 1117–1128 (2005).Article 
PubMed 
PubMed Central 

Google Scholar 
Kantaputra, P. N. et al. Juberg-Hayward syndrome and Roberts syndrome are allelic, caused by mutations in ESCO2. Arch. Oral Biol. 119, 104918 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gordillo, M. et al. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum. Mol. Genet. 17, 2172–2180 (2008).Article 
CAS 
PubMed 

Google Scholar 
Robert, J. B. A child with double cleft of lip and palate, protrusion of the intermaxillary portion of the upper jaw and imperfect development of the bones of the four extremities. Ann. Surg. 70, 252–253 (1919).
Google Scholar 
Goh, E. S. Y. et al. The Roberts syndrome/SC phocomelia spectrum—a case report of an adult with review of the literature. Am. J. Med. Genet. A. 152, 472–478 (2010).Article 

Google Scholar 
Lenz, W. D., Marquardt, E. & Weicker, H. Pseudothalidomide syndrome. Birth Defects Orig. Art. Ser. 11, 97–107 (1974).
Google Scholar 
Vega, H. et al. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J. Med. Genet. 47, 30–37 (2010).Article 
CAS 
PubMed 

Google Scholar 
Sanchez, A. C., Thren, E. D., Iovine, M. K. & Skibbens, R. V. Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity. Cell Cycle 21, 501–513 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McBride, W. G. Thalidomide and congenital abnormalities. Lancet 2, 90927–90928 (1961).
Google Scholar 
Bodera, P. & Stankiewicz, W. Immunomodulatory properties of thalidomide analogs: pomalidomide and lenalidomide, experimental and therapeutic applications. Recent Pat. Endocr. Metab. Immune Drug Discov. 5, 192–196 (2011).Article 
CAS 
PubMed 

Google Scholar 
Schwartz, M. P. et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl. Acad. Sci. 112, 12516–12521 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ulmke, P. A. et al. Molecular profiling reveals involvement of ESCO2 in intermediate progenitor cell maintenance in the developing mouse cortex. Stem Cell Rep 16, 968–984 (2021).Article 
CAS 

Google Scholar 
Guo, X. B., Huang, B., Pan, Y. H., Su, S. G. & Li, Y. ESCO2 inhibits tumor metastasis via transcriptionally repressing MMP2 in colorectal cancer. Cancer Manag. Res. 10, 6157–6166 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ito, T., Ando, H. & Handa, H. Teratogenic effects of thalidomide: molecular mechanisms. Cell. Mol. Life Sci. 68, 1569–1579 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Banerji, R., Skibbens, R. V. & Iovine, M. K. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome. Biol. Open 6, 1802–1813 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, H. et al. Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLoS Genet. 15, e1007685 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Minamino, M. et al. Temporal regulation of ESCO2 degradation by the MCM complex, the CUL4-DDB1-VPRBP complex, and the anaphase-promoting complex. Curr. Biol. 28, 2665–2672 (2018).Article 
CAS 
PubMed 

Google Scholar 
Skibbens, R. V., Corson, L. B., Koshland, D. & Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13, 307–319 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tóth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1p (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13, 320–333 (1999).Article 
PubMed 
PubMed Central 

Google Scholar 
Bellows, A. M., Kenna, M. A., Cassimeris, L. & Skibbens, R. V. Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Res. 31, 6334–6343 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peters, J. M., Tedeschi, A. & Schmitz, J. The cohesin complex and its roles in chromosome biology. Genes Dev 22, 3089–3114 (2008).Article 
CAS 
PubMed 

Google Scholar 
Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).Article 
CAS 
PubMed 

Google Scholar 
DiNardo, S., Voelkel, K. & Sternglanz, R. DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl Acad. Sci. USA 81, 2616–2620 (1984).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gassler, J. et al. A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600–3618 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Golfier, S., Quail, T., Kimura, H. & Brugués, J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. eLife 9, e53885 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36, 3573–3599 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ball, A. R. Jr & Yokomori, K. Damage‐induced reactivation of cohesin in postreplicative DNA repair. Bioessays 30, 5–9 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin is limiting for the suppression of DNA damage–induced recombination between homologous chromosomes. PLoS Genet 6, e1001006 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Watrin, E. & Peters, J. M. The cohesin complex is required for the DNA damage‐induced G2/M checkpoint in mammalian cells. EMBO J 28, 2625–2635 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16, 560–570 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ünal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell. 16, 991–1002 (2004).Article 
PubMed 

Google Scholar 
Mönnich, M., Kuriger, Z., Print, C. G. & Horsfield, J. A. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PloS One 6, e20051 (2011).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Whelan, G. et al. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J 31, 71–82 (2012).Article 
CAS 
PubMed 

Google Scholar 
Percival, S. M. et al. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Dis. Model Mech. 8, 941–955 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
Jabs, E. W., Tuck-Muller, C. M., Cusano, R. & Rattner, J. B. Centromere separation and aneuploidy in human mitotic mutants: Roberts syndrome. Prog. Clin. Biol. Res. 318, 111–118 (1989).CAS 
PubMed 

Google Scholar 
Tomkins, D. J. & Sisken, J. E. Abnormalities in the cell-division cycle in Roberts syndrome fibroblasts: a cellular basis for the phenotypic characteristics? Am. J. Hum. Genet. 36, 1332 (1984).CAS 
PubMed 
PubMed Central 

Google Scholar 
Burns, M. A. & Tomkins, D. J. Hypersensitivity to mitomycin C cell-killing in Roberts syndrome fibroblasts with, but not without, the heterochromatin abnormality. Mutat. Res., Sect. Environ. Mutagen. Relat. Subj 216, 243–249 (1989).CAS 

Google Scholar 
van der Lelij, P. et al. The cellular phenotype of Roberts syndrome fibroblasts as revealed by ectopic expression of ESCO2. PloS One 4, e6936 (2009).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Van Den Berg, D. J. & Francke, U. Sensitivity of Roberts syndrome cells to gamma radiation, mitomycin C, and protein synthesis inhibitors. Somat. Cell Mol. Genet. 19, 377–392 (1993).Article 
PubMed 

Google Scholar 
Logan, M. et al. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).Article 
CAS 
PubMed 

Google Scholar 
Martin, J. F. & Olson, E. N. Identification of a prx1 limb enhancer. Genesis 26, 225–229 (2000).Article 
CAS 
PubMed 

Google Scholar 
Durland, J. L., Sferlazzo, M., Logan, M. & Burke, A. C. Visualizing the lateral somitic frontier in the Prx1Cre transgenic mouse. J. Anat. 212, 590–602 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yin, M. & Pacifici, M. Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb. Dev. Dyn. 222, 522–533 (2001).Article 
CAS 
PubMed 

Google Scholar 
Eshkar-Oren, I. et al. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136, 1263–1272 (2009).Article 
CAS 
PubMed 

Google Scholar 
Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).Article 
CAS 
PubMed 

Google Scholar 
Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14, 125–133 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, X., Wang, M., Katsyv, I., Irie, H. & Zhang, B. EMUDRA: ensemble of multiple drug repositioning approaches to improve prediction accuracy. Bioinformatics 34, 3151–3159 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mfarej, M. G. & Skibbens, R. V. An ever-changing landscape in Roberts syndrome biology: implications for macromolecular damage. PLoS Genet 16, e1009219 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Salmon, T. B., Evert, B. A., Song, B. & Doetsch, P. W. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 32, 3712–3723 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rowe, L. A., Degtyareva, N. & Doetsch, P. W. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic. Biol. Med. 45, 1167–1177 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, M. et al. DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death Dis. 3, e249 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, B., Lee, K. K., Zhang, L. & Gerton, J. L. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome. PLoS Genet. 9, e1003857 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Xu, B., Gogol, M., Gaudenz, K. & Gerton, J. L. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genom. 17, 1–18 (2016).Article 

Google Scholar 
McKay, M. J. et al. A Roberts syndrome individual with differential genotoxin sensitivity and a DNA damage response defect. Int. J. Radiat. Oncol. Biol. Phys. 103, 1194–1202 (2019).Article 
PubMed 

Google Scholar 
Ren, Q., Yang, H., Gao, B. & Zhang, Z. Global transcriptional analysis of yeast cell death induced by mutation of sister chromatid cohesin. Compar. Funct. Genom. 2008, e634283 (2008).Article 

Google Scholar 
Perkins, A. T., Das, T. M., Panzera, L. C. & Bickel, S. E. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc. Natl Acad. Sci. USA 113, 6823–6830 (2016).Article 
ADS 

Google Scholar 
Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Norbury, C. J. & Zhivotovsky, B. DNA damage-induced apoptosis. Oncogene 23, 2797–2808 (2004).Article 
CAS 
PubMed 

Google Scholar 
Shen, H. M. & Liu, Z. G. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 40, 928–939 (2006).Article 
CAS 
PubMed 

Google Scholar 
Madesh, M. & Hajnóczky, G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J. Cell Biol. 155, 1003–1016 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Simon, H. U., Haj-Yehia, A. & Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415–418 (2000).Article 
CAS 
PubMed 

Google Scholar 
Gotoh, Y. & Cooper, J. A. Reactive oxygen species-and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-α signal transduction. J. Biol. Chem. 273, 17477–17482 (1998).Article 
CAS 
PubMed 

Google Scholar 
Lopez, K. E. & Bouchier-Hayes, L. Lethal and non-lethal functions of caspases in the DNA damage response. Cells 11, e1887 (2022).Article 

Google Scholar 
Schaub, F. J. et al. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat. Med. 6, 790–796 (2000).Article 
CAS 
PubMed 

Google Scholar 
Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).Article 
CAS 
PubMed 

Google Scholar 
Horsfield, J. A. et al. Cohesin-dependent regulation of Runx genes. Development 134, 2639–2649 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kim, B. J. et al. Esco2 is a novel corepressor that associates with various chromatin modifying enzymes. Biochem. Biophys. Res. Commun. 372, 298–304 (2008).Article 
CAS 
PubMed 

Google Scholar 
Rhodes, J. M., McEwan, M. & Horsfield, J. A. Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation? Mol. Cancer Res. 9, 1587–1607 (2011).Article 
CAS 
PubMed 

Google Scholar 
Mehta, G. D., Rizvi, S. M. A. & Ghosh, S. K. Cohesin: a guardian of genome integrity. Biochim. Biophys. Acta. Mol. Cell. Res. 1823, 1324–1342 (2012).Article 
CAS 

Google Scholar 
Skibbens, R. V., Marzillier, J. & Eastman, L. Cohesins coordinate gene transcriptions of related function within Saccharomyces cerevisiae. Cell Cycle 9, 1601–1606 (2010).Article 
CAS 
PubMed 

Google Scholar 
Waldman, T. Emerging themes in cohesin cancer biology. Nat. Rev. Cancer 20, 504–515 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vargesson, N. The teratogenic effects of thalidomide on limbs. J Hand Surg Eur Vol. 44, 88–95 (2019).Article 
PubMed 

Google Scholar 
Vargesson, N. & Hootnick, D. Arterial dysgenesis and limb defects: clinical and experimental examples. Reprod. Toxicol. 70, 21–29 (2017).Article 
CAS 
PubMed 

Google Scholar 
Meganathan, K. et al. Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells. PloS One 7, e44228 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bean, C. J., Hunt, P. A., Millie, E. A. & Hassold, T. J. Analysis of a malsegregating mouse Y chromosome: evidence that the earliest cleavage divisions of the mammalian embryo are non-disjunction-prone. Hum. Mol. Genet. 10, 963–972 (2001).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2+ P253R mice. BMC Dev. Bio. 10, 1–20 (2010).
Google Scholar 
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bernsen, J. Dynamic thresholding of grey-level images fcV. Proceeding of the 8 International Conference O11 Pattern Recognition, 1251–1255 (1986).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, 10–12 (2011).Article 

Google Scholar 
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article 
CAS 
PubMed 

Google Scholar 
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12, 1–16 (2011).Article 

Google Scholar 
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, 1–17 (2014).Article 

Google Scholar 
Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g: Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, W193–W200 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
RDevelopment, C.O.R.E. TEAM 2009: R: a language and environment for statistical computing. Internet: http://www.R-project.org (2012).Song, W. M. & Zhang, B. Multiscale embedded gene co-expression network analysis. PLoS Comput. Biol. 11, e1004574 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles