Catalytic asymmetric synthesis of meta benzene isosteres

Salomen, L. M., Ellermann, M. & Diederich, F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int. Edn 50, 4808–4842 (2011).
Google Scholar 
Locke, G. M., Bernhard, S. S. R. & Senge, M. O. Nonconjugated hydrocarbons as rigid‐linear motifs: isosteres for material sciences and bioorganic and medicinal chemistry. Chem. Eur. J. 25, 4590–4647 (2019).CAS 
PubMed 

Google Scholar 
Nishihara, Y. (ed.) Applied Cross-Coupling Reactions Vol. 80 (Springer, 2013).Dalvie, D., Nair, S., Kang, P. & Loi., C.-M. in Metabolism, Pharmacokinetics and Toxicity of Functional Groups (ed. Smith, D. A.) 275–327 (Royal Society of Chemistry, 2010).Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).CAS 
PubMed 

Google Scholar 
Ritchie, T. J. & Macdonald, S. F. J. The impact of aromatic ring count on compound developability—are too many aromatic rings a liability in drug design? Drug Discov. Today 14, 1011–1020 (2009).CAS 
PubMed 

Google Scholar 
Lovering, F. Escape from Flatland 2: complexity and promiscuity. Med. Chem. Commun. 4, 515–519 (2013).CAS 

Google Scholar 
Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).CAS 
PubMed 

Google Scholar 
Stepan, F. F. et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J. Med. Chem. 55, 3414–3424 (2012).CAS 
PubMed 

Google Scholar 
Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).ADS 
CAS 
PubMed 

Google Scholar 
Iida, T. et al. Practical and facile access to bicyclo[3.1.1]heptanes: potent bioisosteres of meta-substituted benzenes. J. Am. Chem. Soc. 144, 21848–21852 (2022).CAS 
PubMed 

Google Scholar 
Wiesenfeldt, M. P. et al. General access to cubanes as benzene bioisosteres. Nature 618, 513–518 (2023).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kazi, N., Aublette, M. C., Allinson, S. L. & Coote, S. C. A practical synthesis of 1,3-disubstituted cubane derivatives. Chem. Commun. 59, 7971–7973 (2023).CAS 

Google Scholar 
Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).CAS 
PubMed 
PubMed Central 

Google Scholar 
Rigotti, T. & Bach, T. Bicyclo[2.1.1]hexanes by visible light-driven intramolecular crossed [2 + 2] photocycloadditions. Org. Lett. 24, 8821–8825 (2022).CAS 
PubMed 

Google Scholar 
Levterov, V. V., Panasyuk, Y., Pivnytska, V. O. & Mykhailiuk, P. K. Water‐soluble non‐classical benzene mimetics. Angew. Chem. Int. Edn 59, 7161–7167 (2020).CAS 

Google Scholar 
Levterov, V. V. et al. 2‐Oxabicyclo[2.1.1]hexanes: synthesis, properties, and validation as bioisosteres of ortho‐ and meta‐benzenes. Angew. Chem. Int. Edn 63, e202319831 (2024).CAS 

Google Scholar 
Zhao, J.-X. et al. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: long–sought-after mimetics for ortho/meta-substituted arenes. Proc. Natl Acad. Sci. USA 118, e2108881118 (2021).CAS 
PubMed 
PubMed Central 

Google Scholar 
Epplin, R. C. et al. [2]-Ladderanes as isosteres for meta-substituted aromatic rings and rigidified cyclohexanes. Nat. Commun. 13, 6056 (2022).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smith, E. et al. Silver(I)-catalyzed synthesis of cuneanes from cubanes and their investigation as isosteres. J. Am. Chem. Soc. 145, 16365–16373 (2023).CAS 
PubMed 
PubMed Central 

Google Scholar 
Son, J.-Y. et al. Exploring cuneanes as potential benzene isosteres and energetic materials: scope and mechanistic investigations into regioselective rearrangements from cubanes. J. Am. Chem. Soc. 145, 16355–16364 (2023).CAS 
PubMed 
PubMed Central 

Google Scholar 
Fujiwara, K. et al. Biological evaluation of isosteric applicability of 1,3-substituted cuneanes as m-substituted benzenes enabled by selective isomerization of 1,4-substituted cubanes. Chem. Eur. J. 30, e202303548 (2023).
Google Scholar 
Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006).CAS 
PubMed 
PubMed Central 

Google Scholar 
de Groot, C. O. et al. A cell biologist’s field guide to aurora kinase inhibitors. Front. Oncol. 5, 285 (2015).PubMed 
PubMed Central 

Google Scholar 
Lake, E. W. et al. Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states. Proc. Natl Acad. Sci. USA 115, E11894–E11903 (2018).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin, H.-D. & Mayer, B. Proximity effects in organic chemistry—the photoelectron spectroscopic investigation of non-bonding and transannular interactions. Angew. Chem. Int. Edn 22, 283–314 (1983).
Google Scholar 
Houk, K. N. et al. Ionization potentials, electron affinities, and molecular orbitals of 2-substituted norbornadienes. Theory of 1,2 and homo-1,4 carbene cycloaddition selectivities. J. Am. Chem. Soc. 105, 5563–5569 (1983).CAS 

Google Scholar 
Winstein, S. & Shatavsky, M. 2,6-Homoconjugate addition to bicycloheptadiene. Chem. Ind. 1956, 56–57 (1956).
Google Scholar 
Matteson, D. S. & Waldbillig, J. O. A preferred inversion in an electrophilic displacement: mercurideboronation of exo- and endo-5-norbornene-2-boronic acids. J. Am. Chem. Soc. 85, 1019–1020 (1963).CAS 

Google Scholar 
Tang, W. et al. Efficient monophosphorus ligands for palladium-catalyzed Miyaura borylation. Org. Lett. 13, 1366–1369 (2011).CAS 
PubMed 

Google Scholar 
Liang, H. & Morken, J. P. Stereospecific transformations of alkylboronic esters enabled by direct boron-to-zinc transmetalation. J. Am. Chem. Soc. 145, 9976–9981 (2023).CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, N., Liang, H. & Morken, J. P. Copper-catalyzed stereospecific transformations of alkylboronic esters. J. Am. Chem. Soc. 144, 11546–11552 (2022).CAS 
PubMed 
PubMed Central 

Google Scholar 
Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
Sadhu, K. M. & Matteson, D. S. (Chloromethyl)lithium: efficient generation and capture by boronic esters and a simple preparation of diisopropyl (chloromethyl)boronate. Organometallics 4, 1687–1689 (1985).CAS 

Google Scholar 
Xu, N., Kong, Z., Wang, J. Z., Lovinger, G. J. & Morken, J. P. Copper-catalyzed coupling of alkyl vicinal bis(boronic esters) to an array of electrophiles. J. Am. Chem. Soc. 144, 17815–17823 (2022).CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, M., Lee, P. S., Allais, C., Singer, R. A. & Morken, J. P. Desymmetrization of vicinal bis(boronic) esters by enantioselective Suzuki–Miyaura cross-coupling reaction. J. Am. Chem. Soc. 145, 8308–8313 (2023).CAS 

Google Scholar 
Chen, C., Hou, L., Cheng, M., Su, J. & Tong, X. Palladium(0)‐catalyzed iminohalogenation of alkenes: synthesis of 2‐halomethyl dihydropyrroles and mechanistic insights into the alkyl halide bond formation. Angew. Chem. Int. Edn 54, 3092–3096 (2015).CAS 

Google Scholar 
Chen, X. et al. Pd(0)-catalyzed asymmetric carbohalogenation: H-bonding-driven C(sp3)–halogen reductive elimination under mild conditions. J. Am. Chem. Soc. 143, 1924–1931 (2021).CAS 
PubMed 

Google Scholar 
McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
Saunders, M., Laidig, K. E. & Wolfsberg, M. Theoretical calculation of equilibrium isotope effects using ab initio force constants: application to NMR isotope perturbation studies. J. Am. Chem. Soc. 111, 8989–8994 (1989).CAS 

Google Scholar 
Franz, D. E., Singleton, D. A. & Snyder, J. P. 13C kinetic isotope effects for the addition of lithium dibutylcuprate to cyclohexenone. Reductive elimination is rate-determining. J. Am. Chem. Soc. 119, 3383–3384 (1997).
Google Scholar 
Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).CAS 
PubMed 

Google Scholar 
Piomelli, D. et al. Pharmacological profile of the selective FAAH inhibitor KDS‐4103 (URB597). CNS Drug Rev. 12, 21–38 (2006).CAS 
PubMed 
PubMed Central 

Google Scholar 
Van Esbroeck, A. C. M. et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356, 1084–1087 (2017).ADS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J. K. I only have eye for ewe: the discovery of cyclopamine and development of Hedgehog pathway-targeting drugs. Nat. Prod. Rep. 33, 595–601 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
Pan, S. et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med. Chem. Lett. 1, 130–134 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).ADS 
CAS 
PubMed 

Google Scholar 
Jain, N. & Yalkowsky, S. H. Estimation of the aqueous solubility I: application to organic nonelectrolytes. J. Pharm. Sci. 90, 234–252 (2001).CAS 
PubMed 

Google Scholar 
Nicolaou, K. C. et al. Synthesis and biopharmaceutical evaluation of imatinib analogues featuring unusual structural motifs. ChemMedChem 11, 31–37 (2016).CAS 
PubMed 

Google Scholar 
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles