Discovery of the selenium-containing antioxidant ovoselenol derived from convergent evolution

Walsh, C. T. The Chemical Biology of Sulfur (The Royal Society of Chemistry, 2020).Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kayrouz, C. M., Huang, J., Hauser, N. & Seyedsayamdost, M. R. Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 610, 199–204 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cordell, G. A. & Lamahewage, S. N. S. Ergothioneine, ovothiol A, and selenoneine-histidine-derived, biologically significant, trace global alkaloids. Molecules 27, 2673 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gründemann, D. et al. Discovery of the ergothioneine transporter. Proc. Natl Acad. Sci. USA 102, 5256–5261 (2022).Article 

Google Scholar 
Cheah, I. K. & Halliwell, B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta 1822, 784–793 (2012).Article 
CAS 
PubMed 

Google Scholar 
Braunshausen, A. & Seebeck, F. P. Identification and characterization of the first ovothiol biosynthetic enzyme. J. Am. Chem. Soc. 133, 1757–1759 (2011).Article 
CAS 
PubMed 

Google Scholar 
Seebeck, F. P. In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J. Am. Chem. Soc. 132, 6632–6633 (2010).Article 
CAS 
PubMed 

Google Scholar 
Stampfli, A. R. et al. An alternative active site architecture for O2 activation in the ergothioneine biosynthetic EgtB from Chloracidobacterium thermophilum. J. Am. Chem. Soc. 141, 5275–5285 (2019).Article 
CAS 
PubMed 

Google Scholar 
Liao, C. & Seebeck, F. P. Convergent evolution of ergothioneine biosynthesis in cyanobacteria. ChemBioChem 18, 2115–2118 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hu, W. et al. Bioinformatic and biochemical characterizations of C–S bond formation and cleavage enzymes in the fungus Neurospora crassa ergothioneine biosynthetic pathway. Org. Lett. 16, 5382–5385 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goncharenko, K. V., Vit, A., Blankenfeldt, W. & Seebeck, F. P. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway. Angew. Chem. Int. Ed. 54, 2821–2824 (2015).Article 
CAS 

Google Scholar 
Wang, X. et al. Biochemical and structural characterization of OvoATh2: a mononuclear nonheme iron enzyme from Hydrogenimonas thermophila for ovothiol biosynthesis. ACS Catal. 13, 15417–15426 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, M. et al. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis. Int. J. Biol. Macromol. 256, 128428 (2024).Article 
CAS 
PubMed 

Google Scholar 
Elder, J. B., Broome, J. A. & Bushnell, E. A. C. Computational insights into the regeneration of ovothiol and ergothioneine and their selenium analogues by glutathione. ACS Omega 7, 31813–31821 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wiebe, J., Zaliskyy, V., & Bushnell, E. A. C. A Computational investigation of the binding of the selenium analogues of ergothioneine and ovothiol to Cu(I) and Cu(II) and the effect of binding on the redox potential of the Cu(II)/Cu(I) redox couple. J. Chem. https://doi.org/10.1155/2019/9593467 (2019).Marjanovic, B., Simic, M. G. & Jovanovic, S. V. Heterocyclic thiols as antioxidants: why ovothiol C is a better antioxidant than ergothioneine. Free Radic. Biol. Med. 18, 679–685 (1995).Article 
CAS 
PubMed 

Google Scholar 
Kirchnerova, J. & Purdy, W. C. The mechanism of the electrochemical oxidation of thiourea. Anal. Chim. Acta 123, 83–95 (1981).Article 
CAS 

Google Scholar 
Yamashita, M. & Yamashita, Y. in Selenoneine in Marine Organisms (ed. Kim, S.-K.) 1059–1069 (Springer, 2015).Zhu, Q., Costentin, C., Stubbe, J. & Nocera, D. G. Disulfide radical anion as a super-reductant in biology and photoredox chemistry. Chem. Sci. 14, 6876–6881 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cooper, D. R., Grelewska, K., Kim, C.-Y., Joachimiak, A. & Derewenda, Z. S. The structure of DinB from Geobacillus stearothermophilus: a representative of a unique four-helix-bundle superfamily. Acta Crystallogr. Sect. F 66, 219–224 (2010).Article 
CAS 

Google Scholar 
McMahon, S. A. et al. The C-type lectin fold as an evolutionary solution for massive sequence variation. Nat. Struct. Mol. Biol. 12, 886–892 (2005).Article 
CAS 
PubMed 

Google Scholar 
Le Coq, J. & Ghosh, P. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. Proc. Natl Acad. Sci. USA 108, 14649–14653 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, L. et al. Use of a tyrosine analogue to modulate the two activities of a nonheme iron enzyme OvoA in ovothiol biosynthesis, cysteine oxidation versus oxidative C–S bond formation. J. Am. Chem. Soc. 140, 4604–4612 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goncharenko, K. V. & Seebeck, F. P. Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Chem. Commun. 52, 1945–1948 (2016).Article 
CAS 

Google Scholar 
Cheng, R. et al. OvoAMtht from Methyloversatilis thermotolerans ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities. Chem. Sci. 13, 3589–3598 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, L. et al. Mechanistic studies of a nonheme iron enzyme OvoA in ovothiol biosynthesis using a tyrosine analogue, 2-amino-3-(4-hydroxy-3-(methoxyl) phenyl) propanoic acid (MeOTyr). ACS Catal. 9, 253–258 (2019).Article 

Google Scholar 
Naowarojna, N. et al. In vitro reconstitution of the remaining steps in ovothiol A biosynthesis: C–S lyase and methyltransferase reactions. Org. Lett. 20, 5427–5430 (2018).Article 
CAS 
PubMed 

Google Scholar 
Burn, R., Misson, L., Meury, M. & Seebeck, F. P. Anaerobic origin of ergothioneine. Angew. Chem. 129, 12682–12685 (2017).Article 

Google Scholar 
Beliaeva, M. A. & Seebeck, F. P. Discovery and characterization of the metallopterin-dependent ergothioneine synthase from Caldithrix abyssi. JACS Au 2, 2098–2107 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumar, A. A., Illyes, T. Z., Kover, K. E. & Szilagyi, L. Convenient syntheses of 1,2-trans selenoglycosides using isoselenuronium salts as glycosylselenenyl transfer reagents. Carbohydrate Res. 360, 8–18 (2012).Article 
CAS 

Google Scholar 
Katoh, K. Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2019).Article 
PubMed Central 

Google Scholar 
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86 (1998).Article 
CAS 
PubMed 

Google Scholar 
Blodgett, J. A. V. et al. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc. Natl Acad. Sci. USA 107, 11692–11697 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. Sect. D 67, 271–281 (2011).Article 
CAS 

Google Scholar 
Kabsch, W. XDS. Acta Crystallogr. Sect. D 66, 125–132 (2010).Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. Sect. D 67, 282–292 (2011).Article 
CAS 

Google Scholar 
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution. Acta Crystallogr. Sect. D 69, 1204–1214 (2013).Article 
CAS 

Google Scholar 
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D 67, 235–242 (2012).Article 

Google Scholar 
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D 66, 486–501 (2010).Article 
CAS 

Google Scholar 
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 66, 213–221 (2010).Article 
CAS 

Google Scholar 
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).Article 
CAS 
PubMed 

Google Scholar 
The PyMOL molecular graphics system, version 2.5.5. Schrödinger https://www.pymol.org/ (2023).Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).Article 
CAS 
PubMed 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles