Preparation of T8 and double-decker silsesquioxane-based Janus-type molecules: molecular modeling and DFT insights

POSS – Hybrid Plastics. Regist. trademark.Cordes, D. B., Lickiss, P. D. & Rataboul, F. Recent developments in the chemistry of cubic polyhedral. Chem. Rev. 110, 2081–2173 (2010).Article 
CAS 
PubMed 

Google Scholar 
Laird, M. et al. Large polyhedral oligomeric silsesquioxane cages: The isolation of functionalized POSS with an unprecedented Si18O27 core. Angew. Chem. Int. Ed. 60, 3022–3027 (2021).Article 
CAS 

Google Scholar 
Dudziec, B. & Marciniec, B. Double-decker silsesquioxanes: Current chemistry and applications. Curr. Org. Chem. 21, 2794–2813 (2017).CAS 

Google Scholar 
Wang, M., Chi, H., Joshy, K. S. & Wang, F. Progress in the synthesis of bifunctionalized polyhedral oligomeric silsesquioxane. Polymers (Basel) 11, 2098–2118 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, L., Wang, H. & Zheng, S. Well-defined difunctional POSS macromers and related organic–inorganic polymers: Precision synthesis, structure and properties. J. Polym. Sci. https://doi.org/10.1002/pol.20230428 (2023).Article 

Google Scholar 
Ye, Q., Zhou, H. & Xu, J. Cubic polyhedral oligomeric silsesquioxane based functional materials: Synthesis, assembly, and applications. Chem. Asian J. 11, 1322–1337 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhou, H., Ye, Q. & Xu, J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater. Chem. Front. 1, 212–230 (2017).Article 
ADS 
CAS 

Google Scholar 
Gon, M., Tanaka, K. & Chujo, Y. Recent progress on designable hybrids with stimuli-responsive optical properties originating from molecular assembly concerning polyhedral oligomeric silsesquioxane. Chem. Asian J. 17, e202200144 (2022).Article 
CAS 
PubMed 

Google Scholar 
Calabrese, C., Aprile, C., Gruttadauria, M. & Giacalone, F. POSS nanostructures in catalysis. Catal. Sci. Technol. 10, 7415–7447 (2020).Article 
CAS 

Google Scholar 
Wang, L. et al. Multi-stimuli-responsive nanoparticles formed of POSS-PEG for the delivery of boronic acid-containing therapeutics. Biomacromolecules 24, 5071–5082 (2023).Article 
PubMed 

Google Scholar 
Jafari, M. et al. Dendritic hybrid materials comprising polyhedral oligomeric silsesquioxane (POSS) and hyperbranched polyglycerol for effective antifungal drug delivery and therapy in systemic candidiasis. Nanoscale 15, 16163–16177 (2023).Article 
CAS 
PubMed 

Google Scholar 
Poggi, E. & Gohy, J. F. Janus particles: From synthesis to application. Colloid Polym. Sci. 295, 2083–2108 (2017).Article 
CAS 

Google Scholar 
Walther, A. & Mu, A. H. E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. https://doi.org/10.1021/cr300089t (2013).Article 
PubMed 

Google Scholar 
Synytska, A., Khanum, R., Ionov, L., Cherif, C. & Bellmann, C. Water-repellent textile via decorating fibers with amphiphilic Janus Particles. ACS Appl. Mater. Interfaces 3, 1216–1220 (2011).Article 
CAS 
PubMed 

Google Scholar 
Walther, A. & Müller, A. H. E. Janus particles. Soft Matter 4, 663–668 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xu, L., Pradhan, S. & Chen, S. Adhesion force studies of Janus nanoparticles. Langmuir https://doi.org/10.1021/la700774g (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, L. Y., Ross, B. M., Hong, S. & Lee, L. P. Bioinspired nanocorals with decoupled cellular targeting and sensing functionality **. Small https://doi.org/10.1002/smll.200901604 (2010).Article 
PubMed 

Google Scholar 
Valadares, L. F. et al. Catalytic nanomotors: Self-propelled sphere dimers. Small https://doi.org/10.1002/smll.200901976 (2010).Article 
PubMed 

Google Scholar 
Chinnam, P. R. & Wunder, S. L. Polyoctahedral silsesquioxane-nanoparticle electrolytes for lithium batteries: POSS-lithium salts and POSS-PEGs. Chem. Mater. 23, 5111–5121 (2011).Article 
CAS 

Google Scholar 
Han, D., Zhang, Q., Chen, F. & Fu, Q. RSC advances using POSS—C 60 giant molecules as a novel compatibilizer for PS / PMMA polymer blends †. RSC Adv. 6, 18924–18928 (2016).Article 
ADS 
CAS 

Google Scholar 
Han, D. et al. AC SC. Polymer (Guildf). 136, 84–91 (2018).Article 
CAS 

Google Scholar 
Anker, J. N., Behrend, C. J., Huang, H. & Kopelman, R. Magnetically-modulated optical nanoprobes (MagMOONs) and systems. J. Magn. Magn. Mater. 293, 655–662 (2005).Article 
ADS 
CAS 

Google Scholar 
Xu, H., Aylott, J. W., Kopelman, R., Miller, T. J. & Philbert, M. A. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal. Chem. 73, 4124–4133 (2001).Article 
CAS 
PubMed 

Google Scholar 
Behrend, C. J. et al. Metal-capped Brownian and magnetically modulated optical nanoprobes (MOONs): Micromechanics in chemical and biological microenvironments †. J. Phys. Chem. B 108, 10408–10414 (2004).Article 
CAS 

Google Scholar 
Tanaka, T., Hasegawa, Y., Kawamori, T., Kunthom, R. & Takeda, N. Synthesis of double-decker silsesquioxanes from substituted difluorosilane. Organometallics https://doi.org/10.1021/acs.organomet.8b00896 (2018).Article 

Google Scholar 
Asuncion, M. Z., Ronchi, M., Abu-Seir, H. & Laine, R. M. Synthesis, functionalization and properties of incompletely condensed ‘half cube’ silsesquioxanes as a potential route to nanoscale Janus particles. Comptes Rendus Chim. 13, 270–281 (2010).Article 
CAS 

Google Scholar 
Oguri, N., Egawa, Y., Takeda, N. & Unno, M. Janus-cube octasilsesquioxane: Facile synthesis and structure elucidation. Angew. Chem. Int. Ed. 55, 9336–9339 (2016).Article 
CAS 

Google Scholar 
Shiba, H., Yoshikawa, M., Wada, H., Shimojima, A. & Kuroda, K. Synthesis of polycyclic and cage siloxanes by hydrolysis and intramolecular condensation of alkoxysilylated cyclosiloxanes. Chem. Eur. J. https://doi.org/10.1002/chem.201805942 (2019).Article 
PubMed 

Google Scholar 
Blázquez-Moraleja, A., Pérez-Ojeda, M. E., Ramón Suárez, J., Jimeno, M. L. & Chiara, J. L. Chemical communications. Chem. Commun. 52, 5792–5795 (2016).Article 

Google Scholar 
Chen, X. et al. Science of the total environment single step synthesis of Janus nano-composite membranes by atmospheric aerosol plasma polymerization for solvents separation. Sci. Total Environ. 645, 22–33 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Meng, Y., Li, W., Kunthom, R., Liu, H. Rational Design and Application of Superhydrophobic Fluorine-Free Coating Basedon Double-Decker Silsesquioxane for Oil-Water Separation. Polymer 304, 127143 (2024)Article 
CAS 

Google Scholar 
Li, W.; Liu, H. Rational Design and Facile Preparation of Hybrid Superhydrophobic Epoxy Coatings Modified byFluorinated Silsesquioxane-Based Giant Molecules via Photo-Initiated Thiol-Ene Click Reaction with Potential Applications.Chem. Eng. J. 480, 147943 (2024)Article 
CAS 

Google Scholar 
Laine, R. M. et al. Perfect and nearly perfect silsesquioxane (SQs) nanoconstruction sites and Janus SQs. J. Sol Gel Sci. Technol. 46, 335–347 (2008).Article 
CAS 

Google Scholar 
Liu, H. et al. Unraveling the self-assembly of hetero-cluster Janus dumbbells into hybrid cubosomes with internal double diamond structure. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.8b08016 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ma, C. et al. A filled-honeycomb-structured crystal formed by self-assembly of a Janus polyoxometalate – silsesquioxane (POM – POSS) co-cluster Angewandte. Angew. Chem. Int. Ed. Engl. 54, 15699–15704 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wang, F., Phonthammachai, N., Mya, K. Y., Tjiu, W. W. & He, C. PEG-POSS assisted facile preparation of amphiphilic gold nanoparticles and interface formation of Janus nanoparticles. Chem. Commun. 47, 767–769 (2011).Article 
CAS 

Google Scholar 
Liu, H. et al. Manipulation of self-assembled nanostructure dimensions in molecular Janus particles. ACS Nano https://doi.org/10.1021/acsnano.6b01336 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, H. et al. Two-dimensional nanocrystals of molecular Janus particles. J. Am. Chem. Soc. 136, 10691–10699 (2014).Article 
CAS 
PubMed 

Google Scholar 
Marciniec, B., Pietraszuk, C., Pawluć, P. & Maciejewski, H. Inorganometallics (transition metal-metalloid complexes) and catalysis. Chem. Rev. 122, 3996–4090 (2022).Article 
CAS 
PubMed 

Google Scholar 
Troegel, D. & Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord. Chem. Rev. 255, 1440–1459 (2011).Article 
CAS 

Google Scholar 
Walczak, M. et al. Hydrosilylation of alkenes and alkynes with silsesquioxane (HSiMe2O)(i-Bu)7Si8O12 catalyzed by Pt supported on a styrene-divinylbenzene copolymer. J. Catal. 367, 1–6 (2018).Article 
CAS 

Google Scholar 
Walczak, M. et al. Unusual cis- and trans- architecture of dihydrofunctional double-decker shaped silsesquioxane – design and construction of its ethyl bridged π-conjugated arene derivatives. New J. Chem. 41, 3290–3296 (2017).Article 
CAS 

Google Scholar 
Mituła, K., Dutkiewicz, M., Dudziec, B., Marciniec, B. & Czaja, K. A library of monoalkenylsilsesquioxanes as potential comonomers for synthesis of hybrid materials. J. Therm. Anal. Calorim. 132, 1545–1555 (2018).Article 

Google Scholar 
Duszczak, J. et al. Distinct insight into the use of difunctional double-decker silsesquioxanes as building blocks for alternating A-B type macromolecular frameworks. Inorg. Chem. Front. 10, 888–899 (2022).Article 

Google Scholar 
Mrzygłód, A., Rzonsowska, M. & Dudziec, B. Exploring polyol-functionalized dendrimers with silsesquioxane cores. Inorg. Chem. 62, 21343–21352 (2023).Article 
PubMed 

Google Scholar 
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saam, J., Ivanov, I., Walther, M., Holzhütter, H. G. & Kuhn, H. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc. Natl. Acad. Sci. U. S. A. 104, 13319–13324 (2007).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. Proc. Natl. Acad. Sci. U. S. A. 104, 13319–13324 (2007).
Google Scholar 
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. Lett. 38, 3098–3100 (1988).ADS 
CAS 

Google Scholar 
Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 720–723 (1971).Article 
ADS 

Google Scholar 
Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural population analysis. J. Chem. Phys. 83, 735–746 (1985).Article 
ADS 
CAS 

Google Scholar 
Frish, M. J. et al. Gaussian 09, Revision A.1 (Gaussian Inc., 2009).
Google Scholar 
Solvate Plugin, Version 1.5. https://www.ks.uiuc.edu/Research/vmd/plugins/solva at (2021).The Energy Function – CHARMM tutorial. https://www.charmmtutorial.org/index.php/The_Energ at (2021).Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar 
Franz, A., Hoffmann, K. H. & Salamon, P. Best possible strategy for finding ground states. Phys. Rev. Lett. 86, 5219–5222 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon Press, 1989).
Google Scholar 
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Coutsias, E. A., Seok, C. & Dill, K. A. Using quaternions to calculate RMSD. J. Comput. Chem. 25, 1849–1857 (2004).Article 
CAS 
PubMed 

Google Scholar 
Heyer, L. J., Kruglyak, S. & Yooseph, S. Exploring expression data identification and analysis of coexpressed genes. Genome Res. 9, 1106–1115 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Clustering plugin for VMD. http://physiology.med.cornell.edu/faculty/hweinste at (2019).Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).Article 
ADS 
CAS 

Google Scholar 
Petersson, G. A., Mohammad, A. & Laham, A. A complete basis set model chemistry. II. The total energies of open-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 9, 6081–6090 (1991).Article 
ADS 

Google Scholar 
Asaduzzaman, A., Runge, K., Muralidharan, K., Deymier, P. A. & Zhang, L. Energetics of substituted polyhedral oligomeric silsesquioxanes: A DFT study. MRS Commun. 5, 519–524 (2015).Article 
CAS 

Google Scholar 
Asaduzzaman, A., Runge, K., Deymier, P. A. & Muralidharan, K. The role of aluminum substitution on the stability of substituted polyhedral oligomeric silsesquioxanes. Zeitschrift Fur Phys. Chem. 230, 1005–1014 (2016).Article 
CAS 

Google Scholar 
Muya, J. T., Ceulemans, A., Gopakumar, G. & Parish, C. A. Jahn-teller distortion in polyoligomeric silsesquioxane (POSS) cations. J. Phys. Chem. A 119, 4237–4243 (2015).Article 

Google Scholar 
Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).Article 
CAS 
PubMed 

Google Scholar 
Sokolnicki, T., Franczyk, A., Janowski, B. & Walkowiak, J. Synthesis of bio-based silane coupling agents by the modification of eugenol. Adv. Synth. Catal. 363, 5493–5500 (2021).Article 
CAS 

Google Scholar 
Stefanowska, K. et al. Selective hydrosilylation of alkynes with octaspherosilicate (HSiMe2O)8Si8O12. Chem. Asian J. 13, 2101–2108 (2018).Article 
CAS 

Google Scholar 
Spoljaric, S. & Shanks, R. A. Poly (styrene- b -butadiene- b -styrene)—dye-coupled polyhedral oligomeric silsesquioxanes. Adv. Mater. Res. 125, 169–172 (2010).Article 

Google Scholar 
Yuasa, S., Sato, Y., Imoto, H. & Naka, K. Thermal properties of open-cage silsesquioxanes: The effect of substituents at the corners and opening moieties. Bulletin Chem. Soc. Jpn. 92, 127–132 (2019).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles