Mechanism of allosteric inhibition of human p97/VCP ATPase and its disease mutant by triazole inhibitors

Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).Article 
CAS 
PubMed 

Google Scholar 
Bodnar, N. & Rapoport, T. Toward an understanding of the Cdc48/p97 ATPase. F1000Res 6, 1318 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ye, Y., Tang, W. K., Zhang, T. & Xia, D. A mighty “protein extractor” of the cell: structure and function of the p97/CDC48 ATPase. Front. Mol. Biosci. 4, 39 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Stach, L. & Freemont, P. S. The AAA+ ATPase p97, a cellular multitool. Biochem. J 474, 2953–2976 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).Article 
CAS 
PubMed 

Google Scholar 
Ju, J.-S. et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease.J. Cell Biol. 187, 875–888 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bug, M. & Meyer, H. Expanding into new markets-VCP/p97 in endocytosis and autophagy. J. Struct. Biol. 179, 78–82 (2012).Article 
CAS 
PubMed 

Google Scholar 
Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217–227 (2010).Article 
CAS 
PubMed 

Google Scholar 
Antonin, W. & Neumann, H. Chromosome condensation and decondensation during mitosis. Curr. Opin. Cell Biol. 40, 15–22 (2016).Article 
CAS 
PubMed 

Google Scholar 
Uchiyama, K. et al. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo.J. Cell Biol. 159, 855–866 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Latterich, M., Fröhlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).Article 
CAS 
PubMed 

Google Scholar 
Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914 (1995).Article 
CAS 
PubMed 

Google Scholar 
Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).Article 
CAS 
PubMed 

Google Scholar 
Hänzelmann, P. & Schindelin, H. The interplay of cofactor interactions and post-translational modifications in the regulation of the AAA+ ATPase p97. Front. Mol. Biosci. 4, 21 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Watts, G. D. J. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377–381 (2004).Article 
CAS 
PubMed 

Google Scholar 
Mehta, S. G. et al. Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin. Genet. 83, 422–431 (2013).Article 
CAS 
PubMed 

Google Scholar 
Evangelista, T., Weihl, C. C., Kimonis, V., Lochmüller, H. & related diseases Consortium, V. C. P. 215th ENMC international workshop VCP-related multi-system proteinopathy (IBMPFD) 13-15 November 2015, Heemskerk, The Netherlands. Neuromuscul. Disord. 26, 535–547 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Saracino, D. et al. Novel VCP mutations expand the mutational spectrum of frontotemporal dementia. Neurobiol. Aging 72, 187.e11–187.e14 (2018).Article 
CAS 
PubMed 

Google Scholar 
Schiava, M. et al. Clinical classification of variants in the valosin-containing protein gene associated with multisystem proteinopathy. Neurol. Genet. 9, e200093 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tang, W. K. & Xia, D. Mutations in the human AAA+ Chaperone p97 and related diseases. Front. Mol. Biosci. 3, 79 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc. Natl. Acad. Sci. USA. 112, E1705–E1714 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
Franz, A., Ackermann, L. & Hoppe, T. Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. Biochim. Biophys. Acta 1843, 205–215 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ritz, D. et al. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat. Cell Biol. 13, 1116–1123 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, N. C. et al. VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 78, 65–80 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bartolome, F. et al. Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP levels. Neuron 78, 57–64 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deshaies, R. J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12, 94 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Gugliotta, G. et al. Valosin-containing protein/p97 as a novel therapeutic target in acute lymphoblastic leukemia. Neoplasia 19, 750–761 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huryn, D. M., Kornfilt, D. J. P. & Wipf, P. P97: An emerging target for cancer, neurodegenerative diseases, and viral infections. J. Med. Chem. 63, 1892–1907 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xia, D., Tang, W. K. & Ye, Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene 583, 64–77 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Banerjee, S. et al. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351, 871–875 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).Article 
CAS 
PubMed 

Google Scholar 
Hänzelmann, P. & Schindelin, H. Structural basis of ATP hydrolysis and intersubunit signaling in the AAA+ ATPase p97. Structure 24, 127–139 (2016).Article 
PubMed 

Google Scholar 
Song, C., Wang, Q. & Li, C.-C. H. ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. J. Biol. Chem 278, 3648–3655 (2003).Article 
CAS 
PubMed 

Google Scholar 
Wang, Q., Song, C. & Li, C.-C. H. Hexamerization of p97-VCP is promoted by ATP binding to the D1 domain and required for ATPase and biological activities. Biochem. Biophys. Res. Commun. 300, 253–260 (2003).Article 
CAS 
PubMed 

Google Scholar 
Davies, J. M., Brunger, A. T. & Weis, W. I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16, 715–726 (2008).Article 
CAS 
PubMed 

Google Scholar 
Puchades, C., Sandate, C. R. & Lander, G. C. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat. Rev. Mol. Cell Biol. 21, 43–58 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xu, Y. et al. Active conformation of the p97-p47 unfoldase complex. Nat. Commun. 13, 2640 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brunger, A. T. & DeLaBarre, B. NSF and p97/VCP: similar at first, different at last. FEBS Lett. 555, 126–133 (2003).Article 
CAS 
PubMed 

Google Scholar 
Stolz, A., Hilt, W., Buchberger, A. & Wolf, D. H. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523 (2011).Article 
CAS 
PubMed 

Google Scholar 
Niwa, H. et al. The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP. J. Biol. Chem. 287, 8561–8570 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. Conserved L464 in p97 D1-D2 linker is critical for p97 cofactor regulated ATPase activity. Biochem. J 478, 3185–3204 (2021).Article 
CAS 
PubMed 

Google Scholar 
Meyer, H. H., Kondo, H. & Warren, G. The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS Lett. 437, 255–257 (1998).Article 
CAS 
PubMed 

Google Scholar 
Tang, W. K. et al. A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants. EMBO J. 29, 2217–2229 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schuller, J. M., Beck, F., Lössl, P., Heck, A. J. R. & Förster, F. Nucleotide-dependent conformational changes of the AAA+ ATPase p97 revisited. FEBS Lett. 590, 595–604 (2016).Article 
CAS 
PubMed 

Google Scholar 
Bulfer, S. L., Chou, T.-F. & Arkin, M. R. p97 disease mutations modulate nucleotide-induced conformation to alter protein-protein interactions. ACS Chem. Biol. 11, 2112–2116 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buchberger, A., Schindelin, H. & Hänzelmann, P. Control of p97 function by cofactor binding. FEBS Lett. 589, 2578–2589 (2015).Article 
CAS 
PubMed 

Google Scholar 
Nandi, P. et al. Structural and functional analysis of disease-linked p97 ATPase mutant complexes. Int. J. Mol. Sci. 22, 8079 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, R., Ripstein, Z. A., Rubinstein, J. L. & Kay, L. E. Cooperative subunit dynamics modulate p97 function. Proc. Natl. Acad. Sci. USA 116, 158–167 (2019).Article 
CAS 
PubMed 

Google Scholar 
Schuetz, A. K. & Kay, L. E. A Dynamic molecular basis for malfunction in disease mutants of p97/VCP. Elife 5, e20143 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Schütz, A. K., Rennella, E. & Kay, L. E. Exploiting conformational plasticity in the AAA+ protein VCP/p97 to modify function. Proc. Natl. Acad. Sci. USA 114, E6822–E6829 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Tang, W. K. & Xia, D. Altered intersubunit communication is the molecular basis for functional defects of pathogenic p97 mutants. J. Biol. Chem. 288, 36624–36635 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tang, W. K., Zhang, T., Ye, Y. & Xia, D. Structural basis for nucleotide-modulated p97 association with the ER membrane. Cell Discov. 3, 17045 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Caffrey, B. et al. AAA+ ATPase p97/VCP mutants and inhibitor binding disrupt inter-domain coupling and subsequent allosteric activation. J. Biol. Chem. 297, 101187 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Valimehr, S. et al. Molecular mechanisms driving and regulating the AAA+ ATPase VCP/p97, an important therapeutic target for treating cancer, neurological and infectious diseases. Biomolecules 13, 737 (2023).Huang, C., Li, G. & Lennarz, W. J. Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc. Natl. Acad. Sci. USA 109, 9792–9797 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, G., Huang, C., Zhao, G. & Lennarz, W. J. Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc. Natl. Acad. Sci. USA 109, 3737–3741 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chou, T.-F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl. Acad. Sci. USA 108, 4834–4839 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chou, T.-F., Li, K., Frankowski, K. J., Schoenen, F. J. & Deshaies, R. J. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 8, 297–312 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Anderson, D. J. et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28, 653–665 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, H.-J. et al. Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083).J. Med. Chem. 58, 9480–9497 (2015).Article 
CAS 
PubMed 

Google Scholar 
Gareau, A., Rico, C., Boerboom, D. & Nadeau, M.-E. In vitro efficacy of a first-generation valosin-containing protein inhibitor (CB-5083) against canine lymphoma. Vet. Comp. Oncol. 16, 311–317 (2018).Article 
CAS 
PubMed 

Google Scholar 
Tang, W. K., Odzorig, T., Jin, W. & Xia, D. Structural basis of p97 inhibition by the site-selective anticancer compound CB-5083. Mol. Pharmacol. 95, 286–293 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leinonen, H. et al. A p97/valosin-containing protein inhibitor drug CB-5083 has a potent but reversible off-target effect on phosphodiesterase-6.J. Pharmacol. Exp. Ther 378, 31–41 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roux, B. et al. Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Sci. Transl. Med. 13, eabg1168 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alverez, C. et al. Allosteric indole amide inhibitors of p97: Identification of a novel probe of the ubiquitin pathway. ACS Med. Chem. Lett. 7, 182–187 (2016).Article 
CAS 
PubMed 

Google Scholar 
Alverez, C. et al. Structure-activity study of bioisosteric trifluoromethyl and pentafluorosulfanyl indole inhibitors of the AAA ATPase p97. ACS Med. Chem. Lett. 6, 1225–1230 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
LaPorte, M. G. et al. Optimization of phenyl indole inhibitors of the AAA+ ATPase p97. ACS Med. Chem. Lett. 9, 1075–1081 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Polucci, P. et al. Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships. J. Med. Chem. 56, 437–450 (2013).Article 
CAS 
PubMed 

Google Scholar 
Magnaghi, P. et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9, 548–556 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wang, F. et al. Allosteric p97 inhibitors can overcome resistance to ATP-competitive p97 inhibitors for potential anticancer therapy. ChemMedChem 15, 685–694 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Her, N.-G. et al. P97 composition changes caused by allosteric inhibition are suppressed by an on-target mechanism that increases the enzyme’s ATPase activity.Cell Chem. Biol. 23, 517–528 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bouwer, M. F. et al. NMS-873 functions as a dual inhibitor of mitochondrial oxidative phosphorylation. Biochimie 185, 33–42 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
LaPorte, M. G. et al. Optimization of 1,2,4-triazole-based p97 inhibitors for the treatment of cancer. ACS Med. Chem. Lett. 14, 977–985 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
DeVore, K. & Chiu, P.-L. Probing structural perturbation of biomolecules by extracting Cryo-EM data heterogeneity. Biomolecules 12, 628 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, H. et al. Cryo-EM structures of human p97 double hexamer capture potentiated ATPase-competent state. Cell Discov. 8, 19 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoq, M. R. et al. Affinity Capture of p97 with Small-Molecule Ligand Bait Reveals a 3.6 Å Double-Hexamer Cryoelectron Microscopy Structure. ACS Nano 15, 8376–8385 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, S. et al. Cryo-EM structure of dodecamer human p97 in complex with NMS-873 reveals S765-G779 peptide plays critical role for D2 ring oligomerization. Biochem. Biophys. Res. Commun. 601, 146–152 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yu, G. et al. Cryo-electron microscopy structures of VCP/p97 reveal a new mechanism of oligomerization regulation. iScience 24, 103310 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pan, M. et al. Mechanistic insight into substrate processing and allosteric inhibition of human p97. Nat. Struct. Mol. Biol. 28, 614–625 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, F., Li, S., Cheng, K.-W., Rosencrans, W. M. & Chou, T.-F. The p97 inhibitor UPCDC-30245 blocks endo-lysosomal degradation. Pharmaceuticals 15, 204 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, F., Li, S., Houerbi, N. & Chou, T.-F. Temporal proteomics reveal specific cell cycle oncoprotein downregulation by p97/VCP inhibition. Cell Chem. Biol. 29, 517–529.e5 (2022).Article 
CAS 
PubMed 

Google Scholar 
Segura-Cabrera, A. et al. A structure- and chemical genomics-based approach for repositioning of drugs against VCP/p97 ATPase. Sci. Rep. 7, 44912 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, F. et al. Sulforaphane is synergistic with CB-5083 and inhibits colony formation of CB-5083-resistant HCT116 cells. ChemMedChem 17, e202200030 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kobayashi, T., Tanaka, K., Inoue, K. & Kakizuka, A. Functional ATPase activity of p97/valosin-containing protein (VCP) is required for the quality control of endoplasmic reticulum in neuronally differentiated mammalian PC12 cells. J. Biol. Chem. 277, 47358–47365 (2002).Article 
CAS 
PubMed 

Google Scholar 
Halawani, D. et al. Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Mol. Cell. Biol. 29, 4484–4494 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Orme, C. M. & Bogan, J. S. The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-golgi intermediate compartment. J. Biol. Chem. 287, 6679–6692 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ewens, C. A. et al. The p97-FAF1 protein complex reveals a common mode of p97 adaptor binding.J. Biol. Chem 289, 12077–12084 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stach, L. et al. Crystal structure of the catalytic D2 domain of the AAA+ ATPase p97 reveals a putative helical split-washer-type mechanism for substrate unfolding. FEBS Lett. 594, 933–943 (2020).Article 
CAS 
PubMed 

Google Scholar 
Creary, X., Chormanski, K., Peirats, G. & Renneburg, C. Electronic properties of triazoles. Experimental and computational determination of carbocation and radical-stabilizing properties. J. Org. Chem. 82, 5720–5730 (2017).Article 
CAS 
PubMed 

Google Scholar 
Chou, T.-F. et al. Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains.J. Mol. Biol. 426, 2886–2899 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Briggs, L. C. et al. Analysis of nucleotide binding to P97 reveals the properties of a tandem AAA hexameric ATPase. J. Biol. Chem. 283, 13745–13752 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davies, J. M., Tsuruta, H., May, A. P. & Weis, W. I. Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-Ray scattering. Structure 13, 183–195 (2005).Article 
CAS 
PubMed 

Google Scholar 
DeLaBarre, B. & Brunger, A. T. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 347, 437–452 (2005).Article 
CAS 
PubMed 

Google Scholar 
Huyton, T. et al. The crystal structure of murine p97/VCP at 3.6A. J. Struct. Biol. 144, 337–348 (2003).Article 
CAS 
PubMed 

Google Scholar 
Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol 8, 519–530 (1927).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
To, C. et al. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer.Nat Cancer 3, 402–417 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chou, T.-F. & Deshaies, R. J. Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system. J. Biol. Chem. 286, 16546–16554 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McDermott, M. et al. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies. Front. Oncol. 4, 40 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Cheng, A. et al. High resolution single particle cryo-electron microscopy using beam-image shift. J. Struct. Biol 204, 270–275 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).Article 
PubMed 

Google Scholar 
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article 
CAS 
PubMed 

Google Scholar 
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).Article 
PubMed 

Google Scholar 
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. Elife 7, e35383 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).Article 
CAS 
PubMed 

Google Scholar 
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).Article 
CAS 
PubMed 

Google Scholar 
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).Article 
PubMed 

Google Scholar 
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles