Occlusion enhanced pan-cancer classification via deep learning | BMC Bioinformatics

Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(05):584–90.Article 
PubMed 
PubMed Central 

Google Scholar 
Tanaka N, Kaczynska D, Kanatani S, Sahlgren C, Mitura P, Stepulak A, Miyakawa A, Wiklund P, Uhlen P. Mapping of the three-dimensional lymphatic microvasculature in bladder tumours using light-sheet microscopy. Br J Cancer. 2018;118(7):995–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen JJ, Wang SJ, Tsai CA, Lin CJ. Selection of differentially expressed genes in microarray data analysis. Pharmacogenomics J. 2007;7(3):212–20.Article 
CAS 
PubMed 

Google Scholar 
Mahin KF, Robiuddin Md, Islam M, Ashraf S, Yeasmin F, Shatabda S. PanClassif improving pan cancer classification of single cell RNA-Seq gene expression data using machine learning. Genomics. 2022;114(2): 110264.Article 
CAS 
PubMed 

Google Scholar 
Hossain SM, Khatun L, Ray S, Mukhopadhyay A. Pan-cancer classification by regularized multi-task learning. Sci Rep. 2021;11(1):24252.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Khadirnaikar S, Shukla S, Prasanna SR. Integration of pan-cancer multi-omics data for novel mixed subgroup identification using machine learning methods. PLoS ONE. 2023;182023(10): e0287176.Article 

Google Scholar 
Petrini I, Meltzer PS, Kim I-K, Lucchi M, Park K-S, Fontanini G, Gao J, Zucali PA, Calabrese F, Favaretto A, Rea F, Rodriguez-Canales J, Walker RL, Pineda M, Zhu YJ, Lau C, Killian KJ, Bilke S, Voeller D, Dakshanamurthy S, Wang Y, Giaccone G. A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. Nat Genet. 2014;46(8):844–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Snezhkina AV, Lukyanova EN, Zaretsky AR, Kalinin DV, Pokrovsky AV, Golovyuk AL, Krasnov GS, Fedorova MS, Pudova EA, Kharitonov SL, Melnikova NV, Alekseev BY, Kiseleva MV, Kaprin AD, Dmitriev AA, Kudryavtseva AV. Novel potential causative genes in carotid paragangliomas. BMC Med Genet. 2019;20(Suppl 1):48.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lesluyes T, Baud J, Pérot G, Charon-Barra C, You A, Valo I, Bazille C, Mishellany F, Leroux A, Renard-Oldrini S, Terrier P, Cesne AL, Laé M, Piperno-Neumann S, Bonvalot S, Neuville A, Collin F, Maingon P, Coindre J-M, Chibon F. Genomic and transcriptomic comparison of post-radiation versus sporadic sarcomas. Mod Pathol Off J US Can Acad Pathol. 2019;32(12):1786–94.CAS 

Google Scholar 
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao Y, Smyth GK, Shi W. featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.Article 
CAS 
PubMed 

Google Scholar 
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X. A survey of best practices for RNA-Seq data analysis. Genome Biol. 2016;17(1):1–19.
Google Scholar 
Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J. A comprehensive evaluation of normalization methods for illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14(6):671–83.Article 
CAS 
PubMed 

Google Scholar 
Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA. 2020;26(8):903–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao Y, Li M-C, Konaté MM, Chen L, Das B, Chris Karlovich P, Williams M, Evrard YA, Doroshow JH, McShane LM. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-Seq data from the NCI patient-derived models repository. J Transl Med. 2021;19(1):269.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mohamed A, Graves A, Hinton G. Speech recognition with deep recurrent neural networks. In: IEEE international conference on acoustics, speech and signal processing; 2013. p. 6645–9Pierre B, Sadowski Peter J. Understanding dropout. In: Advances in neural information processing systems; 2013. vol. 26, p. 2814–22.Huang H, Li D, Zhang Z, Chen X, Huang K. Adversarially occluded samples for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 5098–5107.Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Computer vision-ECCV 2014: 13th European conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part I 13. Springer; 2014. p. 818–33Mostavi M, Chiu YC, Huang Y, Chen Y. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med Genomics. 2020;13(Suppl 5):44.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
de Guia JM, Devaraj M, Leung CK. DeepGX: deep learning using gene expression for cancer classification. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining; 2019. p. 913–20.Khalifa NE, Taha MH, Ali DE, Slowik A, Hassanien AE. Artificial intelligence technique for gene expression by tumor RNA-Seq data: a novel optimized deep learning approach. IEEE Access. 2020;8:22874–83.Article 

Google Scholar 
Zhao Y, Pan Z, Namburi S, Pattison A, Posner A, Balachander S, Paisie CA, Reddi HV, Rueter J, Gill AJ, Fox S, Raghav KPS, Flynn WF, Tothill RW, Li S, Karuturi RKM, George J. CUP-AI-Dx: a tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. EBioMedicine. 2020;61: 103030.Article 
PubMed 
PubMed Central 

Google Scholar 
Sun K, Wang J, Wang H, Sun H. Genect: a generalizable cancerous status and tissue origin classifier for pan-cancer biopsies. Bioinformatics. 2018;34(23):4129–30.Article 
CAS 
PubMed 

Google Scholar 
Fan F, Chen D, Zhao Y, Wang H, Sun H, Sun K. Rapid preliminary purity evaluation of tumor biopsies using deep learning approach. Comput Struct Biotechnol J. 2020;18:1746–53.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim SK, Kim SY, Kim JH, Roh SA, Cho DH, Kim YS, Kim JC. A nineteen gene-based risk score classifier predicts prognosis of colorectal cancer patients. Mol Oncol. 2014;8(8):1653–66.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ Jr. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 2005;6(4):R33.Article 
PubMed 
PubMed Central 

Google Scholar 
Kadota K, Ye J, Nakai Y, Terada T, Shimizu K. Roku: a novel method for identification of tissue-specific genes. BMC Bioinform. 2006;7:294.Article 

Google Scholar 
Camargo AP, Vasconcelos AA, Fiamenghi MB, Pereira GAG, Carazzolle MF. Tspex: a tissue-specificity calculator for gene expression data. Res Square; 2020.Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom. 2014;13(2):397–406.Article 
CAS 

Google Scholar 
van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM. Importance of GFAP isoform-specific analyses in astrocytoma. Glia. 2019;67(8):1417–33.Article 
PubMed 
PubMed Central 

Google Scholar 
Duff MO, Olson S, Wei X, Garrett SC, Osman A, Bolisetty M, Plocik A, Celniker SE, Graveley BR. Genome-wide identification of zero nucleotide recursive splicing in drosophila. Nature. 2015;521(7552):376–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, Foster B, Moser M, Karasik E, Gillard B, Ramsey K, Sullivan S, Bridge J, Magazine H, Syron J, Fleming J, Siminoff L, Traino H, Mosavel M, Barker L, Jewell S, Rohrer D, Maxim D, Filkins D, Harbach P, Cortadillo E, Berghuis B, Turner L, Hudson E, Feenstra K, Sobin L, Robb J, Branton P, Korzeniewski G, Shive C, Tabor D, Qi L, Groch K, Nampally S, Buia S, Zimmerman A, Smith A, Burges R, Robinson K, Valentino K, Bradbury D, Cosentino M, Diaz-Mayoral N, Kennedy M, Engel T, Williams P, Erickson K, Ardlie K, Winckler W, Getz G, DeLuca D, MacArthur D, Kellis M, Thomson A, Young T, Gelfand E, Donovan M, Meng Y, Grant G, Mash D, Marcus Y, Basile M, Liu J, Zhu J, Tu Z, Cox NJ, Nicolae DL, Gamazon ER, Im HK, Konkashbaev A, Pritchard J, Stevens M, Flutre T, Wen X, Dermitzakis ET, Lappalainen T, Guigo R, Monlong J, Sammeth M, Koller D, Battle A, Mostafavi S, McCarthy M, Rivas M, Maller J, Rusyn I, Nobel A, Wright F, Shabalin A, Feolo M, Sharopova N, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.Article 
CAS 

Google Scholar 
Pontén F, Jirström K, Uhlen M. The human protein atlas—a tool for pathology. J Pathol J Pathol Soc Great Br Ireland. 2008;216(4):387–93.
Google Scholar 
Cai H, An Y, Chen X, Sun D, Chen T, Peng Y, Zhu F, Jiang Y, He X. Epigenetic inhibition of miR-663b by long non-coding RNA HOTAIR promotes pancreatic cancer cell proliferation via up-regulation of insulin-like growth factor 2. Oncotarget. 2016;7(52):86857.Article 
PubMed 
PubMed Central 

Google Scholar 
Mulong D, Shi D, Yuan L, Li P, Chu H, Qin C, Yin C, Zhang Z, Wang M. Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci Rep. 2015;5(1):10437.Article 

Google Scholar 
Hong S, Yan Z, Wang H, Ding L, Song Y, Bi M. miR-663b promotes colorectal cancer progression by activating RAS/RAF signaling through downregulation of TNK1. Hum Cell. 2020;33(1):104–15.Article 
CAS 
PubMed 

Google Scholar 
Luo XF, Wu XJ, Wei X, Wang AG, Wang SH, Wang JL. LncRNA ADPGK-AS1 regulated cell proliferation, invasion, migration and apoptosis via targeting miR-542-3p in osteosarcoma. Eur Rev Med Pharmacol Sci. 2019;23(20):8751–60.PubMed 

Google Scholar 
Jiang HY, Wang ZJ. ADPGK-AS1 promotes the progression of colorectal cancer via sponging miR-525 to upregulate FUT1. Eur Rev Med Pharmacol Sci. 2020;24(5):2380–6.PubMed 

Google Scholar 
Song S, Weihua Yu, Lin S, Zhang M, Wang T, Guo S, Wang H. LncRNA ADPGK-AS1 promotes pancreatic cancer progression through activating ZEB1-mediated epithelial-mesenchymal transition. Cancer Biol Therapy. 2018;19(7):573–83.Article 
CAS 

Google Scholar 
Yang J, Weizhu W, Minhua W, Ding J. Long noncoding RNA ADPGK-AS1 promotes cell proliferation, migration, and EMT process through regulating miR-3196/otx1 axis in breast cancer. In Vitro Cel Dev Biol Anim. 2019;55(7):522–32.Article 
CAS 

Google Scholar 
Song J, Peng J, Zhu C, Bai G, Liu Y, Zhu J, Liu J. Identification and validation of two novel prognostic LncRNAs in kidney renal clear cell carcinoma. Cell Physiol Biochem. 2018;48(6):2549–62.Article 
CAS 
PubMed 

Google Scholar 
Yang L, Yang T, Wang H, Dou T, Fang X, Shi L, Li X, Feng M. DNMBP-AS1 regulates NHLRC3 expression by sponging miR-93-5p/17-5p to inhibit colon cancer progression. Front Oncol. 2022;12: 765163.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu Z, Lam N, Thiele CJ. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription. Oncotarget. 2015;6(29):27628–40.Article 
PubMed 
PubMed Central 

Google Scholar 
Kwak S, Kim TW, Kang B-H, Kim J-H, Lee J-S, Lee H-T, Hwang I-Y, Shin J, Lee J-H, Cho E-J, Youn H-D. Zinc finger proteins orchestrate active gene silencing during embryonic stem cell differentiation. Nucleic Acids Res. 2018;46(13):6592–607.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellá G. Zinc-finger proteins in health and disease. Cell Death Discov. 2017;3(1):1–12.Article 

Google Scholar 
Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist P-H, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, Ponten F. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507.Article 
PubMed 

Google Scholar 
Uhlén M, Björling E, Agaton C, Al-Khalili Szigyarto C, Amini B, Andersen E, Andersson A-C, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Ödling J, Oksvold P, Olsson I, Öster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson Å, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Pontén F. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cel Proteom. 2005;4(12):1920–32.Article 

Google Scholar 
Heyliger SO, Soliman KFA, Saulsbury MD, Renee RR. Prognostic relevance of ZNF844 and Chr 19p13 2 KRAB-zinc finger proteins in clear cell renal carcinoma. Cancer Genom Proteom. 2022;19(3):305–27.Article 
CAS 

Google Scholar 
Wang W, Zhijian X, Wang N, Yao R, Qin T, Lin H, Yue L. Prognostic value of eight immune gene signatures in pancreatic cancer patients. BMC Med Genom. 2021;14(1):42.Article 
CAS 

Google Scholar 
Yan W, Scoumanne A, Jung Y-S, Xu E, Zhang J, Zhang Y, Ren C, Sun P, Chen X. Mice deficient in poly(C)-binding protein 4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation. Genes Dev. 2016;30(5):522–34.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hibino E, Hiroaki H. Potential of rescue and reactivation of tumor suppressor p53 for cancer therapy. Biophys Rev. 2022;14(1):267–75.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Farnebo M, Bykov VJN, Wiman KG. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun. 2010;396(1):85–9.Article 
CAS 
PubMed 

Google Scholar 
Jiang H, Cheng L, Hu P, Liu R. MicroRNA-663b mediates TAM resistance in breast cancer by modulating TP73 expression. Mol Med Rep. 2018;18(1):1120–6.CAS 
PubMed 

Google Scholar 
Howell A, Howell SJ. Tamoxifen evolution. Br J Cancer. 2023;128(3):421–5.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang M, Jia M, Yuan K. MicroRNA-663b promotes cell proliferation and epithelial mesenchymal transition by directly targeting SMAD7 in nasopharyngeal carcinoma. Exp Ther Med. 2018;16(4):3129–34.PubMed 
PubMed Central 

Google Scholar 
You X, Wang Y, Meng J, Han S, Liu L, Sun Y, Zhang J, Sun S, Li X, Sun W, Dong Y, Zhang Y. Exosomal miR-663b exposed to TGF-ß1 promotes cervical cancer metastasis and epithelial-mesenchymal transition by targeting MGAT3. Oncol Rep. 2021;45(4):1.Article 

Google Scholar 
Guo L, Li B, Miao M, Yang J, Ji J. MicroRNA-663b targets GAB2 to restrict cell proliferation and invasion in hepatocellular carcinoma. Mol Med Rep. 2019;19(4):2913–20.CAS 
PubMed 

Google Scholar 
Yang F, Liu Y, Dong S, Ma R, Bhandari A, Zhang X, Wang O. A novel long non-coding RNA FGF14-AS2 is correlated with progression and prognosis in breast cancer. Biochem Biophys Res Commun. 2016;470(3):479–83.Article 
CAS 
PubMed 

Google Scholar 
Jin Y, Zhang M, Duan R, Yang J, Yang Y, Wang J, Jiang C, Yao B, Li L, Yuan H, Zha X, Ma C. Long noncoding RNA FGF14-AS2 inhibits breast cancer metastasis by regulating the miR-370-3p/FGF14 axis. Cell Death Discov. 2020;6(1):1–14.Article 

Google Scholar 
Hou R, Liu Y, Yanzhuo S, Shu Z. Overexpression of long non-coding RNA FGF14-AS2 inhibits colorectal cancer proliferation via the RERG/Ras/ERK signaling by sponging microRNA-1288-3p. Pathol Oncol Res. 2020;26(4):2659–67.Article 
CAS 
PubMed 

Google Scholar 
Li R, Chen Y, Wu J, Cui X, Zheng S, Yan H, Wu Y, Wang F. LncRNA FGF14-AS2 represses growth of prostate carcinoma cells via modulating miR-96-5p/AJAP1 axis. J Clin Lab Anal. 2021;35(11): e24012.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, et al. David bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(suppl–2):W169–75.Article 
PubMed 
PubMed Central 

Google Scholar 
Shibel R, Sarfstein R, Nagaraj K, Lapkina-Gendler L, Laron Z, Dixit M, Yakar S, Werner H. The olfactory receptor gene product, OR5H2, modulates endometrial cancer cells proliferation via interaction with the IGF1 signaling pathway. Cells. 2021;10(6):1483.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weber L, Schulz WA, Philippou S, Eckardt J, Ubrig B, Hoffmann MJ, Tannapfel A, Kalbe B, Gisselmann G, Hatt H. Characterization of the olfactory receptor or10h1 in human urinary bladder cancer. Front Physiol. 2018;9:456.Article 
PubMed 
PubMed Central 

Google Scholar 
Bose S, Banerjee S, Mondal A, Chakraborty U, Pumarol J, Croley CR, Bishayee A. Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy. Cells. 2020;9(6):1451.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet. 2015;52(1):17–24.Article 
PubMed 

Google Scholar 
Pan Y, Sun C, Huang M, Liu Y, Qi F, Liu L, Wen J, Liu J, Xie K, Ma H, Hu Z, Shen H. A genetic variant in pseudogene E2F3P1 contributes to prognosis of hepatocellular carcinoma. J Biomed Res. 2014;28(3):194–200.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38(4):431–40.Article 
CAS 
PubMed 

Google Scholar 
Han L, Yuan Y, Zheng S, Yang Y, Li J, Edgerton ME, Diao L, Xu Y, Verhaak RGW, Liang H. The pan-cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat Commun. 2014;5:3963.Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles