Manganese-catalyzed cyclopropanation of allylic alcohols with sulfones

Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).Article 
CAS 
PubMed 

Google Scholar 
Talele, T. T. The “cyclopropyl fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules. J. Med. Chem. 59, 8712–8756 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wessjohann, L. A., Brandt, W. & Thiemann, T. Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem. Rev. 103, 1625–1648 (2003).Article 
CAS 
PubMed 

Google Scholar 
Schneider, T. F., Kaschel, J. & Werz, D. B. A new golden age for donor–acceptor cyclopropanes. Angew. Chem. Int. Ed. 53, 5504–5523 (2014).Article 
CAS 

Google Scholar 
Pirenne, V., Muriel, B. & Waser, J. Catalytic enantioselective ring-opening reactions of cyclopropanes. Chem. Rev. 121, 227–263 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhu, S., Xu, X., Perman, J. A. & Zhang, X. P. A general and efficient cobalt(II)-based catalytic system for highly stereoselective cyclopropanation of alkenes with α-cyanodiazoacetates. J. Am. Chem. Soc. 132, 12796–12799 (2010).Article 
CAS 
PubMed 

Google Scholar 
Costantini, M. & Mendoza, A. Modular enantioselective synthesis of cis-cyclopropanes through self-sensitized stereoselective photodecarboxylation with benzothiazolines. ACS Catal 11, 13312–13319 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ni, J., Xia, X., Zheng, W.-F. & Wang, Z. Ti-catalyzed diastereoselective cyclopropanation of carboxylic derivatives with terminal olefins. J. Am. Chem. Soc. 144, 7889–7900 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sakurai, S., Inagaki, T., Kodama, T., Yamanaka, M. & Tobisu, M. Palladium-catalyzed siloxycyclopropanation of alkenes using acylsilanes. J. Am. Chem. Soc. 144, 1099–1105 (2022).Article 
CAS 
PubMed 

Google Scholar 
Palomo, E. et al. Generating Fischer-type Rh-carbenes with Rh-carbynoids. J. Am. Chem. Soc. 145, 4975–4981 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berger, K. E., Martinez, R. J., Zhou, J. & Uyeda, C. Catalytic asymmetric cyclopropanations with nonstabilized carbenes. J. Am. Chem. Soc. 145, 9441–9447 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charette, A. B. & Beauchemin, A. Simmons-Smith cyclopropanation reaction. Org. React. 58, 1–415 (2004).
Google Scholar 
Kim, H. Y. & Walsh, P. J. Efficient approaches to the stereoselective synthesis of cyclopropyl alcohols. Acc. Chem. Res. 45, 1533–1547 (2012).Article 
CAS 
PubMed 

Google Scholar 
Maas, G. Ruthenium-catalysed carbenoid cyclopropanation reactions with diazo compounds. Chem. Soc. Rev. 33, 183–190 (2004).Article 
CAS 
PubMed 

Google Scholar 
Ford, A. et al. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev. 115, 9981–10080 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z.-L., Xie, Y. & Xuan, J. Visible light-mediated cyclopropanation: recent progress. Eur. J. Org. Chem. 2022, e202201066 (2022).Article 
CAS 

Google Scholar 
Cha, J. K. & Kulinkovich, O. G. The Kulinkovich cyclopropanation of carboxylic acid derivatives. Org. React. 77, 1–160 (2012).Beutner, G. L. & George, D. T. Opportunities for the application and advancement of the Corey–Chaykovsky cyclopropanation. Org. Process Res. Dev. 27, 10–41 (2023).Article 
CAS 

Google Scholar 
Zimmer, L. E. & Charette, A. B. Enantioselective synthesis of 1,2,3-trisubstituted cyclopropanes using gem-dizinc. Reagents. J. Am. Chem. Soc. 131, 15624–15626 (2009).Article 
CAS 
PubMed 

Google Scholar 
Wang, T., Liang, Y. & Yu, Z.-X. Density functional theory study of the mechanism and origins of stereoselectivity in the asymmetric Simmons–Smith cyclopropanation with charette chiral dioxaborolane. Ligand. J. Am. Chem. Soc. 133, 9343–9353 (2011).Article 
CAS 
PubMed 

Google Scholar 
Lévesque, É., Goudreau, S. R. & Charette, A. B. Improved zinc-catalyzed simmons–smith reaction: access to various 1,2,3-trisubstituted cyclopropanes. Org. Lett. 16, 1490–1493 (2014).Article 
PubMed 

Google Scholar 
Taillemaud, S., Diercxsens, N., Gagnon, A. & Charette, A. B. Mechanism-Driven Elaboration of an Enantioselective Bromocyclopropanation Reaction of Allylic Alcohols. Angew. Chem. Int. Ed. 54, 14108–14112 (2015).Article 
CAS 

Google Scholar 
Phipps, E. J. T. & Rovis, T. Rh(III)-catalyzed C–H activation-initiated directed cyclopropanation of allylic alcohols. J. Am. Chem. Soc. 141, 6807–6811 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Srimani, D., Leitus, G., Ben-David, Y. & Milstein, D. Direct catalytic olefination of alcohols with sulfones. Angew. Chem. Int. Ed. 53, 11092–11095 (2014).Article 
CAS 

Google Scholar 
Waiba, S., Das, A., Barman, M. K. & Maji, B. Base metal-catalyzed direct olefinations of alcohols with sulfones. ACS Omega 4, 7082–7087 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Landge, V. G. et al. Iron-catalyzed direct julia-type olefination of alcohols. J. Org. Chem. 85, 9876–9886 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gai, Y., Julia, M. & Verpeaux, J.-N. Nickel-catalyzed cyclopropanation of alkenes via methylene transfer from lithiated tert-butyl methyl sulfone. Synlett 1991, 56–57 (1991).Article 

Google Scholar 
Gai, Y., Julia, M. & Verpeaux, J.-N. Conversion of non-activated alkenes into cyclopropanes with lithiated sulfones under nickel catalysis. Bull. Soc. Chim. Fr. 9, 817–829 (1996).
Google Scholar 
Johnson, J. D., Teeples, C. R., Akkawi, N. R. & Wilkerson-Hill, S. M. Efficient synthesis of orphaned cyclopropanes using sulfones as carbene equivalents. J. Am. Chem. Soc. 144, 14471–14476 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hendrickson, J. B., Giga, A. & Wareing, J. Triflones (CF3SO2C). Survey of reactivity and synthetic utility. J. Am. Chem. Soc. 96, 2275–2276 (1974).Article 
CAS 

Google Scholar 
Sodoyer, R., Abad, E., Rouvier, E. & Cambon, A. Synthese de nouvelles sulfones F-alkylées saturees et α,β-insaturees. J. Fluor. Chem. 22, 401–419 (1983).Article 
CAS 

Google Scholar 
Cid, M. B., López-Cantarero, J., Duce, S. & Ruano, J. L. G. Enantioselective organocatalytic approach to the synthesis of α,α-disubstituted cyanosulfones. J. Org. Chem. 74, 431–434 (2009).Article 
CAS 

Google Scholar 
Coulibali, S., Deruer, E., Godin, E. & Canesi, S. A stereoselective arylative-cyclopropanation process. Org. Lett. 19, 1188–1191 (2017).Article 
CAS 
PubMed 

Google Scholar 
Chang, M.-Y., Chen, Y.-C. & Chan, C.-K. One-pot synthesis of multifunctionalized cyclopropanes. Tetrahedron 70, 2257–2263 (2014).Article 
CAS 

Google Scholar 
Hsueh, N.-C., Wang, Y.-H. & Chang, M.-Y. Sequential condensation and double desulfonylative cyclopropanation of 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins: access to biscyclopropane-fused tetralins. Org. Biomol. Chem. 21, 1206–1221 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tang, J., He, J., Zhao, S.-Y. & Liu, W. Manganese-catalyzed chemoselective coupling of secondary alcohols, primary alcohols and methanol. Angew. Chem. Int. Ed. 62, e202215882 (2023).Article 
CAS 

Google Scholar 
Sun, F., Huang, J., Wei, Z., Tang, C. & Liu, W. Divergent synthesis of alcohols and ketones via cross-coupling of secondary alcohols under manganese catalysis. Angew. Chem. Int. Ed. 62, e202303433 (2023).Article 
CAS 

Google Scholar 
Sun, F. et al. Borrowing hydrogen β-phosphinomethylation of alcohols using methanol as C1 source by pincer manganese. Complex. J. Am. Chem. Soc. 145, 25545–25552 (2023).Article 
CAS 
PubMed 

Google Scholar 
Irrgang, T. & Kempe, R. 3d-metal catalyzed n- and c-alkylation reactions via borrowing hydrogen or hydrogen autotransfer. Chem. Rev. 119, 2524–2549 (2018).Article 
PubMed 

Google Scholar 
Kwok, T., Hoff, O., Armstrong, R. J. & Donohoe, T. J. Control of absolute stereochemistry in transition-metal-catalysed hydrogen-borrowing reactions. Chem. Eur. J. 26, 12912–12926 (2020).Article 
CAS 
PubMed 

Google Scholar 
Reed-Berendt, B. G., Latham, D. E., Dambatta, M. B. & Morrill, L. C. Borrowing hydrogen for organic synthesis. ACS Cent. Sci. 7, 570–585 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Das, K., Barman, M. K. & Maji, B. Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chem. Commun. 57, 8534–8549 (2021).Article 
CAS 

Google Scholar 
Gao, Y., Hong, G., Yang, B.-M. & Zhao, Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem. Soc. Rev. 52, 5541–5562 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ma, W. et al. Iron-catalyzed anti-Markovnikov hydroamination and hydroamidation of allylic. Alcohols. J. Am. Chem. Soc. 141, 13506–13515 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xu, R. et al. Anti-Markovnikov hydroamination of racemic allylic alcohols to access chiral γ-amino alcohols. Angew. Chem. Int. Ed. 59, 21959–21964 (2020).Article 
CAS 

Google Scholar 
Pan, Y. et al. Asymmetric synthesis of γ-secondary amino alcohols via a borrowing-hydrogen cascade. Org. Lett. 22, 7278–7283 (2020).Article 
CAS 
PubMed 

Google Scholar 
Duarte de Almeida, L., Bourriquen, F., Junge, K. & Beller, M. Catalytic formal hydroamination of allylic alcohols using manganese PNP-pincer complexes. Adv. Synth. Catal. 363, 4177–4181 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Das, K., Sarkar, K. & Maji, B. Manganese-catalyzed anti-markovnikov hydroamination of allyl alcohols via hydrogen-borrowing catalysis. ACS Catal 11, 7060–7069 (2021).Article 
CAS 

Google Scholar 
Li, F. et al. Manganese-catalyzed asymmetric formal hydroamination of allylic alcohols: a remarkable macrocyclic ligand effect. Angew. Chem. Int. Ed. 61, e202202972 (2022).Article 
ADS 
CAS 

Google Scholar 
Zhang, X. et al. Asymmetric ruthenium-catalyzed hydroalkylation of racemic allylic alcohols for the synthesis of chiral amino acid derivatives. Angew. Chem. Int. Ed. 61, e202203244 (2022).Article 
ADS 
CAS 

Google Scholar 
Chang, X. et al. Stereodivergent construction of 1,4-nonadjacent stereocenters via hydroalkylation of racemic allylic alcohols enabled by copper/ruthenium relay catalysis. Angew. Chem. Int. Ed. 61, e202206517 (2022).Article 
ADS 
CAS 

Google Scholar 
Thiyagarajan, S., Sankar, R. V., Anjalikrishna, P. K., Suresh, C. H. & Gunanathan, C. Catalytic formal conjugate addition: direct synthesis of δ-hydroxynitriles from nitriles and allylic alcohols. ACS Catal. 12, 2191–2204 (2022).Article 
CAS 

Google Scholar 
Wang, S. et al. Manganese catalyzed cross-coupling of allylic alcohols and nitriles: an elegant route for access to δ-hydroxynitriles. Green Chem. 25, 357–364 (2023).Article 
CAS 

Google Scholar 
Mukherjee, A. & Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal 8, 11435–11469 (2018).Article 
CAS 

Google Scholar 
Kallmeier, F. & Kempe, R. Manganese complexes for (de)hydrogenation catalysis: a comparison to cobalt and iron catalysts. Angew. Chem. Int. Ed. 57, 46–60 (2018).Article 
CAS 

Google Scholar 
Gorgas, N. & Kirchner, K. Isoelectronic manganese and iron hydrogenation/dehydrogenation catalysts: similarities and divergences. Acc. Chem. Res. 51, 1558–1569 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Filonenko, G. A., van Putten, R., Hensen, E. J. M. & Pidko, E. A. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev. 47, 1459–1483 (2018).Article 
CAS 
PubMed 

Google Scholar 
Alig, L., Fritz, M. & Schneider, S. First-row transition metal (de)hydrogenation catalysis based on functional pincer ligands. Chem. Rev. 119, 2681–2751 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Wang, M., Li, Y. & Liu, Q. Homogeneous manganese-catalyzed hydrogenation and dehydrogenation reactions. Chem 7, 1180–1223 (2021).Article 
CAS 

Google Scholar 
Das, K., Waiba, S., Jana, A. & Maji, B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem. Soc. Rev. 51, 4386–4464 (2022).Article 
CAS 
PubMed 

Google Scholar 
Peña-López, M., Piehl, P., Elangovan, S., Neumann, H. & Beller, M. Manganese-catalyzed hydrogen-autotransfer C−C bond formation: α-alkylation of ketones with primary alcohols. Angew. Chem. Int. Ed. 55, 14967–14971 (2016).Article 

Google Scholar 
Fu, S., Shao, Z., Wang, Y. & Liu, Q. Manganese-catalyzed upgrading of ethanol into 1-butanol. J. Am. Chem. Soc. 139, 11941–11948 (2017).Article 
CAS 
PubMed 

Google Scholar 
Nguyen, D. H. et al. Manganese pincer complexes for the base-free, acceptorless dehydrogenative coupling of alcohols to esters: development, scope, and understanding. ACS Catal. 7, 2022–2032 (2017).Article 
CAS 

Google Scholar 
Freitag, F., Irrgang, T. & Kempe, R. Mechanistic studies of hydride transfer to imines from a highly active and chemoselective manganate catalyst. J. Am. Chem. Soc. 141, 11677–11685 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kaithal, A., Gracia, L.-L., Camp, C., Quadrelli, E. A. & Leitner, W. Direct synthesis of cycloalkanes from diols and secondary alcohols or ketones using a homogeneous manganese catalyst. J. Am. Chem. Soc. 141, 17487–17492 (2019).Article 
CAS 
PubMed 

Google Scholar 
Borghs, J. C., Lebedev, Y., Rueping, M. & El-Sepelgy, O. Sustainable manganese-catalyzed solvent-free synthesis of pyrroles from 1,4-diols and primary amines. Org. Lett. 21, 70–74 (2019).Article 
CAS 
PubMed 

Google Scholar 
Schlagbauer, M., Kallmeier, F., Irrgang, T. & Kempe, R. Manganese-catalyzed β-methylation of alcohols by methanol. Angew. Chem. Int. Ed. 59, 1485–1490 (2020).Article 
CAS 

Google Scholar 
Zhang, G., Irrgang, T., Schlagbauer, M. & Kempe, R. Synthesis of 1,3-diketones from esters via liberation of hydrogen. Chem. Catal. 1, 681–690 (2021).Article 
CAS 

Google Scholar 
Wang, Y. et al. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nat. Chem. 14, 1233–1241 (2022).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles