Palladium-catalyzed cascade of aza-Wacker and Povarov reactions of aryl amines and 1,6-dienes for hexahydro-cyclopenta[b]quinoline framework

Nájera, C., Beletskaya, I. P. & Yus, M. Metal-catalyzed regiodivergent organic reactions. Chem. Soc. Rev. 48, 4515–4618 (2019).Article 
PubMed 

Google Scholar 
Neto, J. S. S. & Zeni, G. Transition metal-catalyzed and metal-free cyclization reactions of alkynes with nitrogen-containing substrates: synthesis of pyrrole derivatives. ChemCatChem 12, 3335–3408 (2020).Article 
CAS 

Google Scholar 
Hemric, B. N. Beyond osmium: progress in 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes. Org. Biomol. Chem. 19, 46–81 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wu, Z., Hu, M., Li, J., Wu, W. & Jiang, H. Recent advances in aminative difunctionalization of alkenes. Org. Biomol. Chem. 19, 3036–3054 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zeng, Z., Gao, H., Zhou, Z. & Yi, W. Intermolecular redox-neutral carboamination of C–C multiple bonds initiated by transition-metal-catalyzed C–H activation. ACS Catal. 12, 14754–14772 (2022).Article 
CAS 

Google Scholar 
Volla, C. M. R., Atodiresei, I. & Rueping, M. Catalytic C–C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev. 114, 2390–2431 (2014).Article 
CAS 
PubMed 

Google Scholar 
Kashinath, K. & Srinivasa Reddy, D. One-pot quadruple/triple reaction sequence: a useful tool for the synthesis of natural products. Org. Biomol. Chem. 13, 970–973 (2015).Article 
CAS 
PubMed 

Google Scholar 
Afewerki, S. & Córdova, A. Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chem. Rev. 116, 13512–13570 (2016).Article 
CAS 
PubMed 

Google Scholar 
Heravi, M. M., Zadsirjan, V., Dehghani, M. & Ahmadi, T. Towards click chemistry: multicomponent reactions via combinations of name reactions. Tetrahedron 74, 3391–3457 (2018).Article 
CAS 

Google Scholar 
Döndaş, H. A., Retamosa, Md. G. & Sansano, J. M. Recent development in palladium-catalyzed domino reactions: access to materials and biologically important carbo- and heterocycles. Organometallics 38, 1828–1867 (2019).Article 

Google Scholar 
Kotov, V., Scarborough, C. C. & Stahl, S. S. Palladium-catalyzed aerobic oxidative amination of alkenes: development of intra- and intermolecular aza-Wacker reactions. Inorg. Chem. 46, 1910–1923 (2007).Article 
CAS 
PubMed 

Google Scholar 
McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thomas, A. A., Nagamalla, S. & Sathyamoorthi, S. Salient features of the aza-Wacker cyclization reaction. Chem. Sci. 11, 8073–8088 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shinde, A. H. & Sathyamoorthi, S. Oxidative cyclization of sulfamates onto pendant alkenes. Org. Lett. 22, 896–901 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fernandes, R. A. & Gangani, A. J. Palladium-catalyzed oxidant dependent switchable aza-Wacker cyclization and oxidative dimerization of benzimidates. Org. Lett. 24, 7400–7404 (2022).Article 
CAS 
PubMed 

Google Scholar 
Paul, D., Mague, J. T. & Sathyamoorthi, S. Sulfamate-tethered aza-Wacker cyclization strategy for the syntheses of 2-amino-2-deoxyhexoses: preparation of orthogonally protected d-galactosamines. J. Org. Chem. 88, 1445–1456 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mandal, G. H. & Sathyamoorthi, S. Sulfamate-tethered aza-Wacker strategy for a kasugamine synthon. J. Org. Chem. 89, 793–797 (2024).Article 
CAS 
PubMed 

Google Scholar 
Yip, K.-T., Yang, M., Law, K.-L., Zhu, N.-Y. & Yang, D. Pd(II)-catalyzed enantioselective oxidative tandem cyclization reactions. Synthesis of indolines through C−N and C−C bond formation. J. Am. Chem. Soc. 128, 3130–3131 (2006).Article 
CAS 
PubMed 

Google Scholar 
He, W., Yip, K.-T., Zhu, N.-Y. & Yang, D. Pd(II)/tBu-quinolineoxazoline: an air-stable and modular chiral catalyst system for enantioselective oxidative cascade cyclization. Org. Lett. 11, 5626–5628 (2009).Article 
CAS 
PubMed 

Google Scholar 
Yip, K.-T., Zhu, N.-Y. & Yang, D. Palladium-catalyzed highly diastereoselective oxidative cascade cyclization reactions. Org. Lett. 11, 1911–1914 (2009).Article 
CAS 
PubMed 

Google Scholar 
Ramalingan, C., Takenaka, K. & Sasai, H. Pd(II)-SPRIX catalyzed enantioselective construction of pyrrolizines/pyrroloindoles employing molecular oxygen as the sole oxidant. Tetrahedron 67, 2889–2894 (2011).Article 
CAS 

Google Scholar 
He, Y.-P., Wu, H., Xu, L., Su, Y.-L. & Gong, L.-Z. Highly enantioselective oxidative tandem cyclization reaction: a chiral ligand and an anion cooperatively control stereoselectivity. Org. Chem. Front. 1, 473–476 (2014).Article 
CAS 

Google Scholar 
Du, W., Gu, Q., Li, Y., Lin, Z. & Yang, D. Enantioselective palladium-catalyzed oxidative cascade cyclization of aliphatic alkenyl amides. Org. Lett. 19, 316–319 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gu, Q.-S. & Yang, D. Enantioselective synthesis of (+)-mitomycin K by a palladium-catalyzed oxidative tandem cyclization. Angew. Chem. Int. Ed. 56, 5886–5889 (2017).Article 
CAS 

Google Scholar 
Ye, C. et al. PdII-catalyzed oxidative tandem aza-Wacker/Heck cyclization for the construction of fused 5,6-bicyclic N,O-heterocycles. Chem.: Asian J. 13, 1897–1901 (2018).CAS 

Google Scholar 
Tian, Q., Liu, Y., Wang, X., Wang, X. & He, W. PdII/novel chiral cinchona alkaloid oxazoline-catalyzed enantioselective oxidative cyclization of aromatic alkenyl amides. Eur. J. Org. Chem. 2019, 3850–3855 (2019).Article 
CAS 

Google Scholar 
Ji, X., Huang, H., Wu, W. & Jiang, H. Palladium-catalyzed intermolecular dehydrogenative aminohalogenation of alkenes under molecular oxygen: an approach to brominated enamines. J. Am. Chem. Soc. 135, 5286–5289 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ouyang, L. et al. Access to α-amino acid esters through palladium-catalyzed oxidative amination of vinyl ethers with hydrogen peroxide as the oxidant and oxygen source. Angew. Chem. Int. Ed. 56, 15926–15930 (2017).Article 
CAS 

Google Scholar 
Liu, C. et al. Palladium-catalyzed cascade cyclization for the synthesis of fused benzo-aza-oxa-[5-6-5] tetracycles. Angew. Chem. Int. Ed. 61, e202215020 (2022).Article 
CAS 

Google Scholar 
Liu, C. et al. Palladium-catalyzed 1,1-oxamidation and 1,1-diamination of unactivated alkenyl carbonyl compounds. Org. Lett. 25, 2701–2706 (2023).Article 
CAS 
PubMed 

Google Scholar 
Liu, C. et al. Access to amino lactones through palladium-catalyzed oxyamination with aromatic amines as the nitrogen source. ACS Catal. 13, 11339–11344 (2023).Article 
CAS 

Google Scholar 
Akiyama, T., Morita, H. & Fuchibe, K. Chiral brønsted acid-catalyzed inverse electron-demand aza Diels−Alder reaction. J. Am. Chem. Soc. 128, 13070–13071 (2006).Article 
CAS 
PubMed 

Google Scholar 
Xie, M. et al. Asymmetric three-component inverse electron-demand aza-Diels–Alder reaction: efficient synthesis of ring-fused tetrahydroquinolines. Angew. Chem. Int. Ed. 49, 3799–3802 (2010).Article 
CAS 

Google Scholar 
Dagousset, G., Zhu, J. & Masson, G. Chiral phosphoric acid-catalyzed enantioselective three-component povarov reaction using enecarbamates as dienophiles: highly diastereo- and enantioselective synthesis of substituted 4-aminotetrahydroquinolines. J. Am. Chem. Soc. 133, 14804–14813 (2011).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z., Wang, B., Wang, Z., Zhu, G. & Sun, J. Complex bioactive alkaloid-type polycycles through efficient catalytic asymmetric multicomponent aza-Diels–Alder reaction of indoles with oxetane as directing group. Angew. Chem. Int. Ed. 52, 2027–2031 (2013).Article 
ADS 
CAS 

Google Scholar 
Yu, J., Jiang, H.-J., Zhou, Y., Luo, S.-W. & Gong, L.-Z. Sodium salts of anionic chiral cobalt(III) complexes as catalysts of the enantioselective Povarov reaction. Angew. Chem. Int. Ed. 54, 11209–11213 (2015).Article 
CAS 

Google Scholar 
Leitch, J. A. et al. Photocatalytic reverse polarity Povarov reaction. Chem. Sci. 9, 6653–6658 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bisag, G. D. et al. Central-to-axial chirality conversion approach designed on organocatalytic enantioselective povarov cycloadditions: first access to configurationally stable indole–quinoline atropisomers. Chem. Eur. J. 25, 15694–15701 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, S.-J., Wang, Z., Tang, Y., Chen, J. & Zhou, L. Asymmetric synthesis of quinoline-naphthalene atropisomers by central-to-axial chirality conversion. Org. Lett. 22, 8894–8898 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wu, F. et al. Rapid synthesis of luotonin a derivatives via synergistic visible-light photoredox and acid catalysis. J. Org. Chem. 87, 1302–1312 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, C. et al. Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization. Nat. Commun. 14, 3380 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, S., Fan, H., Day, C. S., Xi, Y. & Hartwig, J. F. Remote hydroamination of disubstituted alkenes by a combination of isomerization and regioselective N–H addition. J. Am. Chem. Soc. 145, 3875–3881 (2023).Article 
CAS 

Google Scholar 
Ma, S. & Hartwig, J. F. Progression of hydroamination catalyzed by late transition-metal complexes from activated to unactivated alkenes. Acc. Chem. Res. 56, 1565–1577 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chen, S.-Y. et al. Polycyclization enabled by relay catalysis: one-pot manganese-catalyzed C−H allylation and silver-catalyzed Povarov reaction. ChemSusChem 10, 2360–2364 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hu, X.-Y., Zhang, J.-C., Wei, W. & Ji, J.-X. Brønsted acid (HNO3)-catalyzed tandem reaction of α-ketoesters and arylamines: efficient synthesis of 1,2-dihydroquinoline derivatives. Tetrahedron Lett. 52, 2903–2905 (2011).Article 
CAS 

Google Scholar 
Zhang, J.-C. & Ji, J.-X. Highly efficient synthesis of polysubstituted 1,2-dihydroquinolines via tandem reaction of α-ketoesters and arylamines catalyzed by indium triflate. ACS Catal. 1, 1360–1363 (2011).Article 
CAS 

Google Scholar 
Gutiérrez, R. U. et al. Regioselective synthesis of 1,2-dihydroquinolines by a solvent-free MgBr2-catalyzed multicomponent. React. J. Org. Chem. 78, 9614–9626 (2013).Article 

Google Scholar 
Luo, C. & Huang, Y. A highly diastereo- and enantioselective synthesis of tetrahydroquinolines: quaternary stereogenic center inversion and functionalization. J. Am. Chem. Soc. 135, 8193–8196 (2013).Article 
CAS 
PubMed 

Google Scholar 
Gao, Q., Liu, S., Wu, X., Zhang, J. & Wu, A. Coproduct promoted povarov reaction: synthesis of substituted quinolines from methyl ketones, arylamines, and α-ketoesters. J. Org. Chem. 80, 5984–5991 (2015).Article 
CAS 
PubMed 

Google Scholar 
Li, G. et al. Enantioselective organocatalytic transfer hydrogenation of 1,2-dihydroquinoline through formation of aza-o-xylylene. Org. Lett. 17, 4125–4127 (2015).Article 
CAS 
PubMed 

Google Scholar 
Huang, J., Li, G., Yang, G., Zhao, J. & Tang, Z. Brønsted-acid-catalyzed substrate-controlled and site-selective friedel–crafts alkylation: a new strategy for post-modification of 1,2-dihydroquinolines. Asian J. Org. Chem. 6, 1741–1744 (2017).Article 
CAS 

Google Scholar 
El-Harairy, A. et al. A sulfone-containing imidazolium-based brønsted acid ionic liquid catalyst enables replacing dipolar aprotic solvents with butyl acetate. Adv. Synth. Catal. 361, 3342–3350 (2019).Article 
CAS 

Google Scholar 
Su, L.-L. et al. Photocatalytic synthesis of quinolines via Povarov reaction under oxidant-free conditions. Org. Lett. 24, 1180–1185 (2022).Article 
CAS 
PubMed 

Google Scholar 
Clerigué, J., Ramos, M. T. & Menéndez, J. C. Enantioselective catalytic Povarov reactions. Org. Biomol. Chem. 20, 1550–1581 (2022).Article 
PubMed 

Google Scholar 
Ren, X.-R. et al. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular Povarov reaction. J. Am. Chem. Soc. 144, 2488–2494 (2022).Article 
CAS 
PubMed 

Google Scholar 
Masdeu, C., de los Santos, J. M., Palacios, F. & Alonso, C. The intramolecular Povarov tool in the construction of fused nitrogen-containing heterocycles. Top. Curr. Chem. 381, 20 (2023).Article 
CAS 

Google Scholar 
Martín-Encinas, E., Lopez-Aguileta, L., Palacios, F. & Alonso, C. Aza-Povarov reaction. A method for the synthesis of fused tetracyclic chromeno[4,3-d]pyrido[1,2-a]pyrimidines. J. Org. Chem. 89, 1099–1107 (2024).Article 
PubMed 

Google Scholar 
Zhang, D., Liu, J., Córdova, A. & Liao, W.-W. Recent developments in palladium-catalyzed oxidative cascade carbocyclization. ACS Catal. 7, 7051–7063 (2017).Article 
CAS 

Google Scholar 
Kanno, S., Kakiuchi, F. & Kochi, T. Palladium-catalyzed remote diborylative cyclization of dienes with diborons via chain walking. J. Am. Chem. Soc. 143, 19275–19281 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mondal, S., Ballav, T., Biswas, K., Ghosh, S. & Ganesh, V. Exploiting the versatility of palladium catalysis: a modern toolbox for cascade reactions. Eur. J. Org. Chem. 2021, 4566–4602 (2021).Article 
CAS 

Google Scholar 
Tanaka, K., Hattori, H., Yabe, R. & Nishimura, T. Ir-catalyzed cyclization of α,ω-dienes with an N-methyl group via two C–H activation steps. Chem. Commun. 58, 5371–5374 (2022).Article 
CAS 

Google Scholar 
Li, F. et al. Photosensitization enables Pauson-Khand–type reactions with nitrenes. Science 383, 498–503 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kariba, R. M., Houghton, P. J. & Yenesew, A. Antimicrobial activities of a new schizozygane indoline alkaloid from Schizozygia coffaeoides and the revised structure of isoschizogaline. J. Nat. Products 65, 566–569 (2002).Article 
CAS 

Google Scholar 
Jensen, K. L., Dickmeiss, G., Donslund, B. S., Poulsen, P. H. & Jørgensen, K. A. Asymmetric organocatalytic synthesis of complex cyclopenta[b]quinoline derivatives. Org. Lett. 13, 3678–3681 (2011).Article 
CAS 
PubMed 

Google Scholar 
Maitland, J. A. P. et al. Switchable, reagent-controlled diastereodivergent photocatalytic carbocyclisation of imine-derived α-amino radicals. Angew. Chem. Int. Ed. 60, 24116–24123 (2021).Article 
CAS 

Google Scholar 
Magomedov, N. A. Efficient construction of cyclopenta[b]quinoline core of isoschizozygane alkaloids via intramolecular formal hetero-Diels−Alder reaction. Org. Lett. 5, 2509–2512 (2003).Article 
CAS 
PubMed 

Google Scholar 
Huang, H. & Hu, W. An efficient route for the construction of cyclopenta[b]quinoline derivatives via intramolecular cyclopropanation. Tetrahedron 63, 11850–11855 (2007).Article 
CAS 

Google Scholar 
Bunce, R. A., Nammalwar, B. & Slaughter, L. M. Divergent reactivity in tandem reduction–Michael ring closures of five- and six-membered cyclic enones. J. Heterocycl. Chem. 46, 854–860 (2009).Article 
CAS 

Google Scholar 
Müller, T. E. & Beller, M. Metal-initiated amination of alkenes and alkynes. Chem. Rev. 98, 675–704 (1998).Article 
PubMed 

Google Scholar 
Hahn, C., Vitagliano, A., Giordano, F. & Taube, R. Coordination of olefins and N-donor ligands at the fragment [2,6-bis((diphenylphosphino)methyl)pyridine]-palladium(II). Synthesis, structure, and amination of the new dicationic complexes [Pd(PNP)(CH2CHR)](BF4)2 (R = H, Ph). Organometallics 17, 2060–2066 (1998).Article 
CAS 

Google Scholar 
Hahn, C., Morvillo, P. & Vitagliano, A. Olefins coordinated at a highly electrophilic site − dicationic palladium(II) complexes and their equilibrium reactions with nucleophiles. Eur. J. Inorg. Chem. 2001, 419–429 (2001).Article 

Google Scholar 
Michael, F. E. & Cochran, B. M. Room temperature palladium-catalyzed intramolecular hydroamination of unactivated alkenes. J. Am. Chem. Soc. 128, 4246–4247 (2006).Article 
CAS 
PubMed 

Google Scholar 
Cochran, B. M. & Michael, F. E. Mechanistic studies of a palladium-catalyzed intramolecular hydroamination of unactivated alkenes:  protonolysis of a stable palladium alkyl complex is the turnover-limiting step. J. Am. Chem. Soc. 130, 2786–2792 (2008).Article 
CAS 
PubMed 

Google Scholar 
Brookhart, M., Grant, B. & Volpe, A. F.Jr. [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes. Organometallics 11, 3920–3922 (1992).Article 
CAS 

Google Scholar 
Krossing, I. & Raabe, I. Noncoordinating anions—fact or fiction? A survey of likely candidates. Angew. Chem. Int. Ed. 43, 2066–2090 (2004).Article 
CAS 

Google Scholar 
Yakelis, N. A. & Bergman, R. G. Safe preparation and purification of sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate (NaBArF24):  reliable and sensitive analysis of water in solutions of fluorinated tetraarylborates. Organometallics 24, 3579–3581 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wozniak, D. I. et al. Comparing interactions of a three-coordinate Pd cation with common weakly coordinating anions. Organometallics 37, 2376–2385 (2018).Article 
CAS 

Google Scholar 
Alvarez, S. Coordinating ability of anions, solvents, amino acids, and gases towards alkaline and alkaline-earth elements, transition metals, and lanthanides. Chem. Eur. J. 26, 4350–4377 (2020).Article 
CAS 
PubMed 

Google Scholar 
Doll, J. S., Becker, F. J. & Roşca, D.-A. Diazines and triazines as building blocks in ligands for metal-mediated catalytic transformations. ACS Org. Inorg. Au 4, 41–58 (2024).Article 
CAS 
PubMed 

Google Scholar 
Zhou, H., Yang, X., Wang, N., Zhang, Y. & Cai, G. Tigogenin inhibits adipocytic differentiation and induces osteoblastic differentiation in mouse bone marrow stromal cells. Mol. Cell. Endocrinol. 270, 17–22 (2007).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles